
	

1	

The timing of COVID-19 transmission 
Luca	Ferretti1,	Alice	Ledda2,	Chris	Wymant1,	Lele	Zhao1,	Virginia	Ledda3,	Lucie	Abeler-
Dörner1,	Michelle	Kendall1,	Anel	Nurtay1,	Hao-Yuan	Cheng4,	Ta-Chou	Ng5,	Hsien-Ho	Lin5,	
Rob	Hinch1,	Joanna	Masel6,	A.	Marm	Kilpatrick7,	Christophe	Fraser1*	

1	Big	Data	Institute,	Li	Ka	Shing	Centre	for	Health	Information	and	Discovery,	Nuffield	Department	of	
Medicine,	University	of	Oxford,	UK	

2	MRC	Centre	for	Global	Infectious	Disease	Analysis,	Department	of	Infectious	Disease	Epidemiology,	
School	of	Public	Health,	Imperial	College	London,	UK	

3	Liverpool	University	Hospitals	NHS	Foundation	Trust,	UK	

4	Epidemic	Intelligence	Center,	Taiwan	Centers	for	Disease	Control,	Taipei,	Taiwan	

5	Institute	of	Epidemiology	and	Preventive	Medicine,	National	Taiwan	University	College	of	Public	Health;	
Global	Health	Program,	National	Taiwan	University	College	of	Public	Health,	Taipei,	Taiwan	

6	Ecology	&	Evolutionary	Biology,	University	of	Arizona,	USA	

7	Ecology	&	Evolutionary	Biology,	University	of	California,	Santa	Cruz,	USA	

*Email:	christophe.fraser@bdi.ox.ac.uk	

	

Abstract:	The	timing	of	SARS-CoV-2	transmission	is	a	critical	factor	to	understand	the	epidemic	trajectory	
and	the	impact	of	isolation,	contact	tracing	and	other	non-pharmaceutical	interventions	on	the	spread	of	
COVID-19	epidemics.	We	examined	the	distribution	of	transmission	events	with	respect	to	exposure	and	
onset	of	symptoms.	We	show	that	for	symptomatic	individuals,	the	timing	of	transmission	of	SARS-CoV-2	
is	more	strongly	linked	to	the	onset	of	clinical	symptoms	of	COVID-19	than	to	the	time	since	infection.		We	
found	 that	 it	 was	 approximately	 centered	 and	 symmetric	 around	 the	 onset	 of	 symptoms,	 with	 three	
quarters	of	events	occurring	in	the	window	from	2-3	days	before	to	2-3	days	after.	However,	we	caution	
against	overinterpretation	of	the	right	tail	of	the	distribution,	due	to	its	dependence	on	behavioural	factors	
and	interventions.	We	also	found	that	the	pre-symptomatic	infectious	period	extended	further	back	in	time	
for	individuals	with	longer	incubation	periods.	This	strongly	suggests	that	information	about	when	a	case	
was	infected	should	be	collected	where	possible,	in	order	to	assess	how	far	 into	the	past	their	contacts	
should	be	traced.	Overall,	the	fraction	of	transmission	from	strictly	pre-symptomatic	infections	was	high	
(41%;	95%CI	31-50%),	which	limits	the	efficacy	of	symptom-based	interventions,	and	the	large	fraction	of	
transmissions	 (35%;	 95%CI	 26-45%)	 that	 occur	 on	 the	 same	day	 or	 the	 day	 after	 onset	 of	 symptoms	
underlines	the	critical	importance	of	individuals	distancing	themselves	from	others	as	soon	as	they	notice	
any	 symptoms,	even	 if	 they	are	mild.	 Rapid	 or	 at-home	 testing	and	 contextual	 risk	 information	would	
greatly	facilitate	efficient	early	isolation.	

 

Introduction 

The	COVID-19	disease	emerged	at	the	end	of	2019.	Several	months	after	the	first	reports	on	the	disease,	
our	 understanding	 of	 transmission	 of	 the	 causative	 virus	 -	 SARS-CoV-2	 -	 is	 still	 incomplete.	 A	 detailed	
knowledge	of	its	transmission	is	urgently	needed	to	improve	public	health	interventions	aimed	at	reducing	
the	burden	of	the	pandemic	on	societies.	In	particular,	the	temporal	profile	of	infectiousness	in	relation	to	
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the	onset	of	symptoms	is	crucial	for	assessing	and	optimising	public	health	interventions	and	minimising	
disruption	to	society	and	the	economy.	

When	designing	interventions	to	control	a	communicable	disease	such	as	COVID-19,	a	key	quantity	is	the	
fraction	of	transmissions	occurring	while	the	source	is	non-symptomatic	(Fraser	et	al.	2004;	Peak	et	al.	
2017),	i.e.	either	pre-symptomatic	(before	symptom	onset)	or	asymptomatic	(for	individuals	who	never	
develop	symptoms).	

Symptomatic	individuals	are	easier	to	(self-)identify	and	they	can	take	measures	to	avoid	spreading	the	
virus,	whereas	 transmission	 from	non-symptomatic	 individuals	 is	much	more	 difficult	 to	 prevent.	 The	
extent	 and	 timing	 of	 non-symptomatic	 transmission	 have	 a	 large	 impact	 on	 which	 public	 health	
interventions	can	be	effective	and	how	they	should	be	implemented	(Fraser	et	al.	2004;	Peak	et	al.	2017).	
For	 example,	 isolation	 of	 symptomatic	 cases	may	 be	 sufficient	 to	 prevent	 spread	 for	 a	 disease	 that	 is	
transmitted	only	after	onset	of	clinical	symptoms,	as	was	the	case	with	SARS	(May	et	al.	2004);	however,	
further	 interventions	 may	 be	 necessary	 for	 a	 disease	 with	 a	 high	 proportion	 of	 non-symptomatic	
transmission	 such	 as	 COVID-19.	 In	 the	 latter	 case,	 preventing	 transmission	 from	 non-symptomatic	
individuals	requires	actively	finding	such	individuals	through	contact	tracing	(Ferretti	et	al.	2020)	or	mass	
testing	(Larremore	et	al.	2020),	and/or	measures	targeting	the	entire	population	such	as	face	masks,	hand	
hygiene,	and	varying	degrees	of	physical	distancing.	Hence,	knowing	the	contribution	of	non-symptomatic	
transmission	is	key	for	the	choice	of	interventions.	

The	fraction	of	all	COVID-19	transmissions	that	come	from	asymptomatic	individuals	is	difficult	to	measure	
in	an	unbiased	manner;	in	addition,	it	is	likely	dependent	on	the	age	of	infected	individuals	and	therefore	
time-	and	population-specific.	Indirect	evidence	suggests	that	asymptomatic	individuals	are	less	infectious	
than	symptomatic	individuals	(Zhou	et	al.	2020;	Lee	et	al.	2020;	Madewell	et	al.	2020)	and	accounted	for	
less	than	half	of	infections	of	SARS-COV-2	in	China	and	European	countries	in	the	first	half	of	2020	(Pollán	
et	al.	2020;	Lavezzo	et	al.	2020;	Buitrago-Garcia	et	al.	2020).		

Another	challenge	for	public	health	interventions	is	the	occurrence	of	transmissions	before	or	shortly	after	
symptom	 onset,	 from	 individuals	who	 do	 develop	 symptoms	 during	 the	 course	 of	 the	 infection:	 pre-
symptomatic	and	early	symptomatic	transmissions	hereafter.	Pre-symptomatic	transmissions	have	been	
estimated	to	account	for	almost	half	of	all	ever-symptomatic	transmissions	(see	e.g.	meta-analysis	in	(Casey	
et	al.	2020)).		

The	timing	of	pre-symptomatic	and	early	symptomatic	transmission	determines	the	speed	required	for	
finding	 the	 contacts	who	 could	 have	 been	 infected,	 before	 these	 contacts,	 in	 turn,	 infect	 others.	 If	 the	
interval	from	infection	to	onset	of	symptoms	is	just	a	few	days,	as	seems	to	be	the	case	for	COVID-19,	it	
becomes	critical	 to	notify	contacts	 instantly	when	 the	index	case	is	 confirmed	by	rapid	 testing	or	even	
symptom-based	clinical	diagnosis.	Therefore	digital	contact	tracing	via	a	smartphone	app,	which	makes	the	
exposure	notification	step	of	contact	tracing	instantaneous,	could	substantially	enhance	the	effectiveness	
of	traditional	manual	contact	tracing	(Ferretti	et	al.	2020;	Kucharski	et	al.	2020;	Braithwaite	et	al.	2020;	
Anglemyer	et	al.	2020).	Effectiveness	of	digital	contact	tracing	depends	on	many	factors	(Hinch	et	al.	2020)	
including	the	fraction	of	the	population	installing	the	app,	and	on	how	clustered	or	correlated	app	use	is	
within	communities	(Farronato	et	al.	2020),	the	time	until	diagnosis	and	notification	(Kretzschmar	et	al.	
2020),	and	the	compliance	with	quarantine	recommendations.		

Both	 traditional	 and	 digital	 contact	 tracing	 require	 a	 reliable	 estimate	 of	 the	 temporal	 profile	 of	
infectiousness	 in	order	 to	assess	which	contacts	are	at	risk	of	having	been	 infected	and	which	are	not.	
Assessing	 the	 risk	 of	 exposed	 contacts	 as	 accurately	 as	 possible	 is	 key	 to	 maximising	 the	 number	 of	
infectious	individuals	in	quarantine	and	preventing	further	spread,	while	minimising	the	number	of	non-
infectious	individuals	unnecessarily	quarantined.		

In	 this	 study	 we	 examine	 the	 temporal	 profile	 of	 infectiousness	 for	 SARS-CoV-2.	 We	 estimate	 the	
distributions	 for	 the	 length	 of	 the	 intervals	 between	 infection,	 symptom	onset	and	 transmission	 using	
multiple	 datasets	 containing	 information	 on	 191	 transmission	 pairs.	 We	 find	 that	 the	 timing	 of	
transmission	events	depends	more	strongly	on	onset	of	symptoms	than	time	since	infection.	Infectiousness	
reaches	 its	peak	near	 the	onset	of	 symptoms,	after	 increasing	gradually	 from	the	 time	of	 infection.	We	
estimate	 the	 fraction	 of	 pre-symptomatic	 transmissions,	 and	 the	 relative	 importance	 of	 transmissions	
before	and	shortly	after	the	time	of	symptom	onset.	Finally,	we	outline	the	relevance	of	these	findings	for	
contact	tracing,	timing	of	isolation	and	other	individual	precautionary	measures.	
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Time intervals 

The	temporal	profile	of	COVID-19	infection	and	transmission	is	characterised	by	four	epidemiologically	
relevant	time	intervals	(Table	1	and	Figure	1):	the	incubation	period,	the	serial	 interval,	 the	generation	
time	and	the	time	from	onset	of	symptoms	to	transmission	(TOST).	These	four	time	intervals	are	delimited	
by	four	key	time	points:	the	time	at	which	an	individual	gets	infected,	the	time	at	which	they	infect	another	
individual,	the	times	at	which	the	source	develops	symptoms	and	at	which	the	recipient	does.		With	the	
exception	of	the	incubation	period,	which	is	defined	for	a	single	individual,	these	intervals	are	defined	for	
a	transmission	pair:	an	index	(primary)	case	and	a	secondary	case	infected	by	the	index.	

The	incubation	period	is	the	time	between	infection	and	onset	of	symptoms.	From	the	average	of	multiple	
distributions	from	the	literature	(see	Methods),	its	mean	is	5.7	days	and	its	SD	is	3.5	days.	

The	serial	interval	is	the	interval	between	times	of	onset	of	symptoms	in	index	and	secondary	cases.	It	can	
be	directly	measured	from	the	data,	and	has	been	extensively	studied	for	COVID-19	(Griffin	et	al.	2020;	
Nishiura,	Linton,	and	Akhmetzhanov	2020;	Du	et	al.	2020;	Tindale	et	al.	2020),	although	it	can	be	affected	
by	 several	 biases	 (Park	 et	 al.	 2020).	 It	 is	 occasionally	 negative	 -	 when	 the	 secondary	 case	 develops	
symptoms	before	the	index	case.	It	is	undefined	if	either	case	has	an	asymptomatic	infection	or	does	not	
report	symptoms.	

The	generation	time	is	the	interval	between	the	time	of	infection	of	the	index	case	and	the	time	of	infection	
of	the	secondary	case.	It	is	typically	harder	to	estimate	directly	unless	the	interval	of	exposure	is	short	for	
both	index	and	secondary	case.	The	generation	time	is	usually	inferred	indirectly	from	intervals	of	exposure	
and	onset	of	symptoms.	It	has	been	inferred	for	COVID-19	by	(Ferretti	et	al.	2020;	Ganyani	et	al.	2020).	It	
is	always	positive	by	definition.	

TOST	is	the	time	elapsed	between	the	onset	of	symptoms	in	the	index	case,	and	the	transmission	from	index	
to	 secondary	 case.	 It	 is	 positive	 for	 symptomatic	 transmission	 and	 negative	 for	 pre-symptomatic	
transmission	by	definition.	 It	 is	undefined	 if	 the	index	case	has	an	asymptomatic	 infection	or	does	not	
report	 symptoms.	 This	 time	 interval	 has	 rarely	 been	 discussed	 in	 epidemiology,	 although	 it	 has	 been	
considered	for	COVID-19	(He	et	al.	2020;	Ashcroft	et	al.	2020).	

Knowledge	of	these	four	intervals	enables	us	to	predict	the	relative	effectiveness	of	different	interventions,	
e.g.	physical	distancing,	wearing	of	face	masks,	mass	testing	or	contact	tracing.	

	

Table	1:	Four	time	intervals	that	influence	control	via	isolation	of	symptomatic	individuals.	

Time	interval	 From	 	 To	
Incubation	period	 infection	 →	 onset	of	symptoms	
Generation	time	 infection	 →	 transmission	(secondary)	
TOST	 onset	of	symptoms	 →	 transmission	(secondary)	
Serial	interval	 onset	of	symptoms	 →	 onset	of	symptoms	(secondary)	

Results 

Serial interval 

We	analysed	transmission	pairs	from	the	only	four	datasets	in	the	literature	(Ferretti	et	al.	2020;	Xia	et	al.	
2020;	Cheng	et	al.	2020;	He	et	al.	2020)	that	contain	the	date	of	onset	of	symptoms	for	both	index	and	
secondary	 cases,	as	well	 as	 partial	 information	 on	 intervals	 of	 exposure.	 To	 test	 the	 robustness	 of	 the	
results,	we	included	an	additional	dataset	by	(Zhang	et	al.	2020)	with	serial	intervals	only.	

The	empirical	serial	interval,	when	analysing	all	five	datasets	combined,	had	a	mean	of	5.1	days,	a	median	
of	4	days,	and	a	standard	deviation	of	3.8	days;	the	mean	was	4.1	days	without	Zhang	et	al.	These	results	
are	consistent	with	other	studies	(Tindale	et	al.	2020;	Du	et	al.	2020;	Bi	et	al.	2020).	Most	studies	fit	a	
lognormal	distribution	to	the	data,	even	though	serial	intervals	are	occasionally	negative.	The	empirical	
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distribution	and	the	lognormal	distribution	with	the	same	mean	and	SD	are	illustrated	in	Supplementary	
Figure	1.	There	are,	however,	many	caveats	in	using	the	serial	 interval	distribution	for	epidemiological	
inference	(Park	et	al.	2020).	

The	median	of	the	serial	interval	was	similar	across	different	datasets	(all	p>0.2,	two-sided	Mann-Whitney	
U-test)	but	the	variance	was	different,	with	Ferretti	&	Wymant	et	al	and	Cheng	et	al	showing	significant	
underdispersion	and	overdispersion	with	respect	to	the	others	(p=0.001	and	0.025	respectively,	two-sided	
Fligner-Killeen	 test).	14	out	of	40	 transmission	events	 from	Ferretti	&	Wymant	et	al	occurred	during	a	
phase	of	exponential	epidemic	growth,	when	the	corresponding	serial	interval	is	expected	to	be	shorter	
(Svensson	2007).	We	explicitly	 corrected	 for	 this	effect	 in	 the	 inference	of	generation	 time	 in	 the	next	
section.	

Generation time 

We	inferred	the	generation	time	distribution	by	maximum	likelihood	estimation,	using	dates	of	onset	of	
symptoms	for	both	index	and	secondary	cases,	as	well	as	their	intervals	of	exposure	(when	available).	We	
corrected	for	exponential	growth	and	right	censoring,	as	detailed	in	the	Methods.	

To	determine	the	functional	form	of	the	distribution,	we	tested	a	wide	range	of	possible	shapes	that	are	
consistent	 with	 the	 near-absence	 of	 infectiousness	 of	 the	 index	 case	 at	 the	 time	 of	 infection.	 This	
requirement	stems	from	the	very	low	initial	viral	load,	since	each	cycle	of	viral	replication	takes	several	
hours	(Bar-On	et	al.	2020).	

The	best-fitting	shape,	as	determined	by	the	Akaike	Information	Criterion	(AIC),	was	a	Weibull	distribution	
(Figure	 1A;	 mean	 5.5	 days,	 standard	 deviation	 1.8	 days).	 A	 Gompertz,	 a	 log-logistic	 and	 a	 gamma	
distribution	provided	good	fits	as	well	(𝛥𝐴𝐼𝐶 =	0.57,	0.93	and	1.06	respectively,	Supplementary	Table	1).	
The	generation	time	distributions	corresponding	to	the	best	parameter	fits	for	each	shape	are	shown	in	
Supplementary	Figure	2,	and	the	maximum-likelihood	parameter	values	for	each	shape	in	Supplementary	
Table	2.	

Given	the	heterogeneity	among	datasets	in	terms	of	interventions	and	stage	of	the	epidemic,	it	is	important	
to	 assess	 the	 robustness	 of	 the	 inference	 with	 respect	 to	 the	 choice	 of	 datasets.	 We	 re-inferred	 the	
generation	time	distribution	removing	one	dataset	at	a	time,	as	well	as	adding	the	additional	dataset	by	
Zhang	et	al.	The	results	were	quite	robust	and	within	the	uncertainties	of	the	inference,	as	illustrated	in	
Figure	1A.	
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Figure	1:	Top:	illustration	of	the	definitions	of	epidemiologically	relevant	time	intervals.	Bottom:	maximum-
likelihood	distributions	of	(A)	generation	time	and	(B)	TOST,	excluding	or	including	different	datasets,	shown	
with	different	colours.	The	pointwise	95%	CI	for	the	fit	to	the	baseline	dataset	(‘full’,	which	does	not	include	
Zhang	et	al.)	is	shown	in	grey.	The	dashed	black	line	shows	the	incubation	period	distribution	for	comparison.		

Time from onset of symptoms to transmission (TOST) 

We	inferred	the	distribution	for	TOST	by	maximum	likelihood	estimation.	As	COVID-19	is	often	transmitted	
pre-symptomatically	 (negative	 TOST),	 we	 considered	 distributions	 which	 include	 both	 positive	 and	
negative	times.	The	best	fit	was	given	by	a	scaled	Student’s	t	distribution	(Fig.	1B;	mean=-0.07	days,	SD=2.8	
days).	A	skew-logistic	distribution	(mean=0.02	days,	SD=2.65	days)	also	provided	a	good	fit	(𝛥𝐴𝐼𝐶 =	0.65;	
Supplementary	Table	3).	The	TOST	distributions	corresponding	to	the	best	parameter	fits	for	each	shape	
are	shown	in	Supplementary	Figure	3,	and	the	parameter	values	in	Supplementary	Table	4.	

We	tested	the	robustness	with	respect	to	choice	of	datasets	by	removing	one	dataset	at	a	time	and	adding	
an	 additional	 dataset	 as	 before.	 All	 best-fit	 distributions	 were	 centered	 around	 the	 time	 of	 onset	 of	
symptoms	with	roughly	similar	width	(Figure	1B).	

The peak of infectiousness depends on the onset of symptoms rather than the time of infection 

It	 has	 previously	 been	 noted	 that	 the	 similarity	 between	 the	 mean	 incubation	 period	 and	 the	 mean	
generation	time	(about	5.5	days)	suggests	a	mean	TOST	of	close	to	zero	i.e.	an	almost-centered	distribution	
of	TOST	(Nishiura,	Linton,	and	Akhmetzhanov	2020;	Casey	et	al.	2020).	Transmission	events	are	indeed	
clearly	concentrated	around	the	time	of	onset	of	symptoms,	regardless	of	the	details	of	the	inference.	This	
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can	be	either	a	coincidence,	with	no	relation	between	generation	time	and	incubation	period	(symptom-
independent	infectiousness),	or	the	time	since	onset	of	symptoms	could	determine	the	infectiousness	of	an	
individual,	 rather	 than	 the	 time	 since	 the	 individual	 was	 first	 infected	 (symptom-dependent	
infectiousness).	These	two	scenarios	are	illustrated	in	Figure	2A	and	2B	respectively.	

	

Figure	2:	Three	alternative	hypotheses	for	the	timing	of	infectiousness	of	the	blue	individual	(and	individuals	
generally).	In	(A),	infectiousness	depends	on	the	time	since	infection,	regardless	of	whether	symptoms	develop	
quickly	 (A	top)	or	 slowly	(A	bottom).	 In	 (B),	 infectiousness	depends	on	 the	time	of	 the	onset	of	 symptoms,	
regardless	of	whether	the	time	since	infection	is	short	(B	top)	or	long	(B	bottom).	In	(C),	infectiousness	depends	
on	the	time	of	onset	of	symptoms,	but	it	increases	gradually	from	the	time	of	infection,	therefore	leading	to	a	
shorter	 infectious	 period	 if	 symptoms	 develop	 rapidly	 (C	 top)	 and	 a	 longer	 infectious	 period	 if	 symptoms	
appear	late	(C	bottom).	

We	 tested	 which	 of	 these	 two	 scenarios,	 i.e.	 symptom-dependent	 and	 symptom-independent	
infectiousness,	best	fit	our	data	on	transmission	pairs,	using	the	information	on	the	interval	of	exposure	of	
the	index	and	secondary	cases	compared	with	the	time	of	onset	of	symptoms	of	the	index.	Comparing	the	
AIC	values	in	Supplementary	Tables	F	and	G	for	the	most	directly	informative	datasets	(Ferretti	&	Wymant	
et	 al,	 Xia	 et	 al,	 and	 both	 combined),	 we	 found	 clear	 differences	 between	 the	 best	 fits	 for	 symptom-
dependent	and	symptom-independent	infectiousness	(𝛥𝐴𝐼𝐶 =	-13.9,	-11.1,	-22.4	for	the	different	datasets	
respectively;	 Supplementary	 Table	 5).	 Even	 the	 simplest	 Gaussian	 fit	 for	 symptom-dependent	
infectiousness	 was	 a	 much	 better	 fit	 to	 the	 data	 than	 any	 choice	 of	 generation	 time	 distribution	 for	
symptom-independent	infectiousness	(𝛥𝐴𝐼𝐶 =	-5.4,	-11.1,	-18.8).	

These	results	confirm	the	observation	that	for	individuals	that	eventually	develop	symptoms,	the	period	of	
SARS-CoV-2	infectiousness	is	directly	related	to	onset	of	symptoms	rather	than	being	independent	of	it.	For	
symptomatic	individuals,	most	transmission	events	occurred	in	a	range	of	a	few	days	before	and	after	onset	
of	symptoms.	More	than	5	days	before	symptom	onset,	infectiousness	appeared	to	decrease	below	a	tenth	
of	its	peak	value,	and	we	observed	only	a	few	percent	of	transmissions	beyond	5	days	after	symptom	onset.	
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7	

Infectiousness increases gradually from time of infection to onset of symptoms 

Our	analyses	suggest	that	time	of	symptom	onset	is	the	main	determinant	of	when	transmission	occurs,	
with	transmission	peaking	before	and	after	the	onset	of	symptoms.	However,	the	incubation	period	could	
still	affect	the	width	of	the	distribution	of	the	time	of	transmission	events.	Indeed,	the	data	suggest	a	weak	
negative	 correlation	 between	 the	 incubation	 period	 of	 the	 source	 and	 the	 serial	 interval	 of	 the	 pair	
(Supplementary	Figure	4),	which	would	not	be	expected	if	the	timing	of	transmission	was	determined	only	
by	the	TOST	(see	Methods).	

To	 examine	 the	 possibility	 that	 the	 length	 of	 the	 infectious	 period	 depends	 on	 the	 incubation	 period	
(incubation/symptom-dependent	infectiousness),	we	considered	several	possible	dependencies	between	
the	TOST	distribution	and	the	incubation	period.	We	modelled	them	by	rescaling	the	time	of	transmission	
by	a	factor	dependent	on	the	incubation	period,	affecting	either	the	whole	distribution	or	its	left	part	only	
(details	in	Methods	and	Supplementary	Table	5).		

The	model	of	 incubation/symptom-dependent	infectiousness	with	 the	best	 fit	across	all	datasets	was	a	
linear	 rescaling	 of	 pre-symptomatic	 values	 of	TOST	by	 the	 length	 of	 the	 incubation	 period	 (Figure	 2C;	
𝛥𝐴𝐼𝐶 =	0,	-9.3,	-10.2,	-15.5	for	Ferretti	&	Wymant	et	al,	Xia	et	al,	both	combined,	and	all	datasets	combined,	
respectively).	In	other	words,	individuals	with	longer	incubation	periods	also	tend	to	have	a	proportionally	
earlier	and	longer	pre-symptomatic	infectious	period	(Figure	3A).	The	profiles	of	transmission	for	different	
incubation	periods	in	relation	to	TOST	are	depicted	in	Figure	3B.	The	best	fit	for	TOST	is	provided	by	a	
rescaled	skew-logistic	distribution	as	a	function	of	the	TOST	𝑡	and	the	incubation	period	𝑡(:	

𝑝*+,*(𝑡|𝑡() ∝

⎩
⎪
⎨

⎪
⎧ 𝑒6(*67)/9

(1 + 𝑒6(*67)/9)<=> 		for	𝑡 ≥ 0

𝑒6(*E/*F67)/9

(1 + 𝑒6(*E/*F67)/9)<=> 		for	𝑡 < 0
		

with	 parameters	 𝜇 = −4.00	 days,	 𝜎 = 1.85	 days,	 𝛼 = 5.85.	 The	 constant	 𝜏 = 5.42	 days	 is	 the	 mean	
incubation	period	according	to	(McAloon	et	al.	2020).	For	an	incubation	period	𝑡( = 𝜏,	the	TOST	has	a	mean	
of	0.1	days	and	SD	of	2.4	days.	

	

Figure	3:	 probability	of	 transmission	as	a	 function	of	generation	 time	 (left)	and	TOST	 (right)	 for	a	given	
duration	of	the	incubation	period,	relative	to	the	peak	probability.	The	black	line	represents	the	average	with	
respect	to	the	incubation	period	distribution.	The	envelopes	correspond	to	the	pointwise	95%	CI.		
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8	

It	is	unclear	whether	the	magnitude	of	infectiousness	depends	on	the	incubation	period.	It	is	possible	that	
an	early	host	immune	response	could	initially	reduce	viral	replication,	but	once	initial	barriers	of	immunity	
are	overcome,	the	same	peak	infectiousness	could	be	reached.	This	would	mean	that	individuals	with	later	
onset	of	symptoms	have	a	longer	infectious	period	with	the	same	peak	infectiousness;	i.e.	their	cumulative	
infectiousness	 increases	with	 the	 duration	 of	 their	 incubation	period.	Our	 dataset	 cannot	 discriminate	
between	 this	 scenario	and	 the	one	where	cumulative	infectiousness	does	not	change	depending	on	 the	
length	of	the	incubation	period	(Supplementary	Table	5).	Irrespective	of	this,	the	average	distribution	of	
TOST	over	all	durations	of	the	incubation	period	is	very	similar	to	the	previous	fit	(Supplementary	Figure	
5).	

Since	the	time	of	symptom	onset	 is	the	main	determinant	of	 infectiousness,	we	notice	a	strong	positive	
correlation	between	incubation	period	and	generation	time,	which	is	clearly	visible	 in	Figure	3A,	and	a	
weaker	negative	one	between	incubation	period	and	TOST	(Supplementary	Table	6).	

Epidemiological biases could affect symptomatic transmissions 

Many	 biases	 can	 potentially	 affect	 the	 shape	 of	 the	 temporal	 profile	 of	 transmissions	 inferred	 from	
observed	 transmission	 pairs	 These	 include	 both	 sampling	 biases	 and	 self-isolation	 or	 public	 health	
interventions.	

The	more	time	has	passed	since	an	individual	became	infected,	the	more	likely	they	are	to	have	developed	
symptoms	or	have	a	positive	test	result	(either	through	mass	testing	or	as	a	traced	contact),	and	thus	the	
more	 likely	 they	are	 to	have	begun	 taking	precautions	 to	avoid	 transmitting	 the	virus.	Hence,	 inferred	
distributions	of	transmission	events	could	be	prematurely	truncated	relative	to	the	distribution	that	would	
be	observed	with	no	interventions,	and	therefore	differ	from	the	profile	of	purely	biological	infectiousness	
over	time.	

Such	epidemiological	biases	also	affect	the	right	tail	of	the	distribution	of	serial	intervals.	In	particular,	the	
serial	interval	can	change	due	to	interventions	(Ali	et	al.	2020)(Sun	et	al,	personal	communication)	as	it	
depends	strongly	on	time	to	isolation	(Bi	et	al.	2020).	These	biases	cannot	be	disentangled	using	data	from	
transmission	 pairs	 only,	 but	 require	 information	 on	 dates	 of	 exposure	 for	 traced	 contacts	who	 were	
exposed	but	did	not	get	infected.	We	extended	our	approach	to	include	such	information	from	(Cheng	et	al.	
2020)	 (Supplementary	 Figure	 6),	 fitting	 a	model	with	 dataset-dependent	 decay	 of	 transmissions	 after	
symptoms	(Supplementary	Methods).	The	resulting	distribution	of	TOST	does	not	differ	from	our	previous	
fit,	 lying	mostly	within	its	confidence	intervals	(Supplementary	Figure	7).	Furthermore,	the	right	tail	of	
symptomatic	transmissions	is	identical	for	all	datasets.	These	results	confirm	that	the	distribution	of	TOST	
is	robust	and	that	epidemiological	biases	are	similar	between	the	studies,	such	as	the	tendency	to	self-
isolate	when	experiencing	acute	respiratory	symptoms.		

We	 caution,	 however,	 that	 infected	 individuals	 could	 be	 still	 infectious	 well	 beyond	 the	 time	 periods	
suggested	by	this	epidemiological	analysis.	Viral	loads	from	nasal	swabs	provide	substantial	evidence	of	an	
infectious	period	after	symptom	onset	longer	than	the	3-4	days	inferred	here.	High	viral	loads	have	been	
observed	for	at	least	a	week	after	symptoms	(Wölfel	et	al.	2020;	Pan	et	al.	2020;	He	et	al.	2020).	The	crucial	
determinant	of	infectiousness	however	is	the	probability	of	shedding	viable	virus,	which	decays	rapidly	
after	5-10	days	(Wölfel	et	al.	2020;	Bullard	et	al.	2020).	However,	Supplementary	Figure	7	clearly	shows	
that	both	viral	load	and	the	probability	of	viable	virus	isolation	from	multiple	studies	(Arons	et	al.	2020;	
van	Kampen	et	al.	2020)	decay	more	slowly	than	our	epidemiological	observations	suggest.	Resolution	of	
this	mismatch	is	 likely	accounted	for	by	the	increased	compliance	to	isolation	after	onset	of	symptoms,	
discussed	above.	

Fractions of pre-symptomatic and early symptomatic transmissions 

A	key	 feature	of	COVID-19	spread	 is	pre-symptomatic	 transmission.	Several	 studies	have	estimated	 its	
fraction	by	assuming	time	to	symptoms	and	time	to	transmission	are	independent	(Ferretti	et	al.	2020;	
Casey	et	al.	2020).	As	we	have	shown,	this	assumption	is	not	supported	by	data:	transmission	events	are	
closely	 tied	 to	symptom	onset.	Also,	 transmission	on	 the	day	of	 symptom	onset	 is	not	necessarily	pre-
symptomatic	 and	 should	 be	 considered	 separately.	 Here	 we	 assess	 the	 contribution	 of	 strictly	 pre-
symptomatic	transmission	using	two	different	approaches.		
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9	

First,	we	estimated	the	fraction	of	transmission	on	each	individual	day	by	discretizing	the	TOST	distribution	
and	 considering	 the	 part	 of	 the	 distribution	 that	 corresponds	 to	 negative	 times,	 i.e.	 the	 fraction	 of	
transmission	events	that	occur	before	the	day	of	symptom	onset	(Figure	4).	

The	fraction	of	strictly	pre-symptomatic	transmissions	(TOST<0)	from	ever-symptomatic	individuals	was	
42%,	which	is	consistent	with	previous	studies,	even	if	some	of	them	included	the	same	day	as	symptom	
onset	(TOST=0).	

	

Figure	 4:	 Left:	 distribution	 of	 transmissions	 relative	 to	 the	 day	 of	 onset	 of	 symptoms.	 The	 left-most	 bin	
contains	all	transmission	5+	days	before	symptom	onset.	Right:	posterior	distributions	of	the	fraction	of	all	
transmissions	that	occur	before	symptoms	(pre-symptomatic,	TOST<0),	on	the	day	of	onset	of	symptoms	or	the	
following	day	(early	symptomatic,	TOST=0-1)	or	thereafter	(late	symptomatic,	TOST>1),	obtained	from	10000	
bootstraps	from	all	pairs	in	the	full	dataset.	

We	also	 estimate	 the	 fraction	 of	 pre-symptomatic	 transmissions	among	all	 pairs	 in	 our	 dataset	with	a	
Bayesian	approach,	assuming	that	pre-symptomatic	infectiousness	would	scale	with	the	incubation	period	
(i.e.	our	best	model,	illustrated	in	Figure	3).	This	approach	also	estimates	the	fraction	of	presymptomatic	
transmissions	to	be	41%	(95%	CI:	31-50%;	the	full	distribution	is	shown	in	Figure	4).	

While	 much	 attention	 has	 been	 focused	 on	 pre-symptomatic	 transmission,	 the	 contribution	 of	 early	
symptomatic	transmission	is	also	crucial	for	the	spread	of	the	disease.	

The	peak	of	transmission	occurs	on	the	day	of	symptom	onset,	with	an	estimated	20%	of	transmissions,	as	
illustrated	 in	 Figure	 4.	 The	 day	 after	 onset	 of	 symptoms	 is	 also	 very	 relevant,	 accounting	 for	 16%	 of	
transmissions.	 Together,	 these	 two	days	 account	 for	 about	 a	 third	 of	 ever-symptomatic	 transmissions,	
comparable	to	the	fraction	of	pre-symptomatic	transmission.	This	estimate	is	confirmed	by	the	Bayesian	
analysis	of	individual	pairs	in	our	datasets	which	gives	a	value	of	35%	(95%	CI:	26-45%).		

In	contrast,	symptomatic	transmissions	occurring	two	days	or	more	after	onset	of	symptoms	account	for	
only	22%	of	transmissions	(24%	from	Bayesian	analysis,	95%	CI:	16-32%),	although	this	value	is	likely	to	
be	affected	by	self-isolation	and	non-pharmaceutical	interventions	as	discussed	before.	

The	 above	 results	 demonstrate	 the	 importance	 of	 implementing	 non-pharmaceutical	 interventions	 to	
reduce	pre-symptomatic	transmission,	such	as	mass	testing,	contact	tracing	and	physical	distancing.	

They	 also	 underline	 the	 importance	 of	 strict	 infection	 control	measures	 at	 the	 first	 sign	 of	 even	mild	
symptoms	potentially	related	to	COVID-19	(such	as	cough,	fever,	fatigue	or	anosmia),	in	order	to	reduce	
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10	

early	 symptomatic	 transmission.	 According	 to	 our	 results,	 perfect	 isolation	 of	 cases	 from	 onset	 of	
symptoms	would	stop	twice	as	many	transmissions	compared	to	isolation	from	the	second	day	after	onset	
of	 symptoms,	 relative	 to	 a	 baseline	 with	 no	 intervention	 at	 all	 (excluding	 transmissions	 from	 fully	
asymptomatic	individuals).	Self-isolation	of	symptomatic	individuals	is	therefore	especially	important	for	
the	first	two	days.		

Instant,	universal,	and	perfect	self-isolation,	including	from	family	members,	is	challenging,	given	the	low	
specificity	 of	 early	 COVID-19	 symptoms	 and	 the	 high	 prevalence	 of	 respiratory	 viruses	 with	 similar	
symptoms	between	autumn	and	spring	(Menni	et	al.	2020).	Nevertheless,	if	low-cost	good	practices	that	
are	widely	advisable	irrespective	of	symptoms	-	wearing	a	face	mask,	increasing	spatial	distance,	practicing	
enhanced	hygiene	(especially	hand	hygiene),	and	limiting	social	contacts	(including	staying	away	as	much	
as	possible	from	offices,	schools,	public	transport,	and	closed	public	spaces)	-	were	followed	strictly	at	the	
first	onset	of	symptoms,	even	if	mild,	this	could	have	a	substantial	impact	on	the	epidemic.	Such	a	policy	
would	greatly	depend	on	compliance	and	collaboration	from	the	public.	Symptom	tracker	apps	(Drew	et	al.	
2020)	could	play	a	role	in	enhancing	public	awareness	of	mild	COVID-19	symptoms	and	compliance.	As	a	
further	advantage,	this	policy	could	also	reduce	the	burden	of	other	respiratory	viruses.		

Reducing	barriers	to	testing,	and	increasing	the	speed	of	results	is	also	critical;	mass	testing	with	home-
based	or	point-of-care	rapid	testing	could	help	individuals	respond	appropriately	and	quickly	to	onset	of	
mild	 symptoms	 (Larremore	 et	 al.	 2020).	 Likewise,	 exposure	 notification	 by	 contact	 tracing,	 and	 any	
information	 that	 can	 be	 provided	 that	will	 help	 individuals	 gauge	 their	 local	 risk,	will	 help	 individuals	
correctly	interpret	the	onset	of	initial	symptoms	that	might	be	very	non-specific	at	initial	onset.			

Discussion 
We	 have	 presented	 an	 in-depth	 analysis	 of	 the	 timing	 of	 transmission	 from	 a	 selection	 of	 the	 most	
informative	 datasets	 of	 transmission	 pairs	 currently	 available.	 The	 resulting	 picture	 of	 the	 temporal	
infectiousness	profile	of	COVID-19	has	some	clear	consequences	in	terms	of	policy.		

The	most	immediate	consequences	concern	the	assessment	of	the	transmission	risk	associated	to	contacts	
for	both	manual	and	digital	tracing	or	exposure	notification	approaches.	Contact	tracing	guidelines	from	
the	CDC	(CDC	2020)	and	the	WHO	(WHO	2020)	support	tracing	of	contacts	up	to	two	days	before	the	onset	
of	 symptoms	or,	 for	asymptomatic	 individuals,	before	a	positive	 test.	For	symptomatic	 individuals,	 this	
approach	misses	approximately	10%	of	all	transmissions	overall,	but	a	much	larger	fraction	for	individuals	
with	a	 longer	incubation	period	(Supplementary	Figure	8).	Hence,	public	health	advice	should	consider	
appropriately	longer	intervals	for	contact	tracing	whenever	an	estimate	of	the	date	of	infection	is	available	
(e.g.	through	backward	contact	tracing)	and	it	precedes	symptoms	by	more	than	4-5	days.		

For	digital	contact	tracing,	which	relies	on	algorithms	for	risk	scoring	that	can	take	into	account	the	time	
profile	of	infectiousness	(Wilson	et	al.	2020),	our	results	are	highly	valuable	to	inform	the	appropriate	risk	
scoring	algorithm.	They	show	that	the	date	of	onset	of	symptoms	for	the	index	case	is	a	critical	piece	of	
information	for	the	algorithm,	which	should	be	collected	preferably	within	the	app	itself,	or	by	public	health	
officials	at	the	time	the	case	is	confirmed.					

Before	 symptom	 onset,	 relative	 transmission	 probabilities	 estimated	 here	 can	 be	 used	 as	 a	 proxy	 for	
infectiousness,	i.e.	the	degree	of	danger	from	a	given	exposure.	After	symptom	onset,	risk	scores	should	
take	into	account	that	the	distribution	inferred	here	is	likely	to	underestimate	infectiousness.	We	note	that	
quantitative	treatment	of	infectiousness	is	only	possible	in	early	versions	of	the	Google/Apple	exposure	
notification	system;	unfortunately,	recent	versions	do	not	permit	more	than	two	levels	of	infectiousness.	

The	profile	of	infectiousness	possibly	depends	also	on	other	parameters,	such	as	infection	severity	and	age.	
The	infectiousness	profile	for	fully	asymptomatic	individuals	is	unknown.	For	symptomatic	individuals,	the	
limited	data	available	do	not	suggest	a	strong	dependence	on	age	(Ali	et	al.	2020;	Furuse	et	al.	2020),	but	
further	studies	are	needed.		

The	definition	of	the	date	of	onset	of	symptoms	suffers	from	uncertainties	related	to	ambiguities	 in	the	
choice	of	the	set	of	symptoms	associated	to	COVID-19,	the	time	of	onset	of	different	symptoms,	and	the	
uncertainties	in	their	recall.	All	these	sources	of	uncertainty	are	implicitly	present	in	our	study	as	well.	
Given	a	known,	fixed,	and	identifiable	set	of	symptoms,	the	date	of	onset	of	symptoms	can	be	retrieved	with	
reasonable	precision.	However,	the	lack	of	specificity	for	COVID-19	symptoms,	international	variation	in	
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recognised	symptoms,	and	reliance	on	patients'	recollections	all	present	challenges.	The	date	of	infection	
often	has	an	even	greater	degree	of	uncertainty	due	to	the	challenges	in	identifying	infectors	(who	could	
be	 non-symptomatic)	 and	 in	 assessing	 the	 number	 and	 duration	 of	 exposures.	 When	 the	 profile	 of	
infectiousness	as	a	function	of	TOST	is	used	for	risk	scoring,	uncertainties	in	the	date	of	symptom	onset	
should	be	taken	into	account	(e.g.	averaging	the	index’s	expected	infectiousness	at	the	time	of	exposure	
over	the	window	of	possible	times	of	symptom	onset).			

The	large	fraction	of	transmissions	that	occur	either	before	or	shortly	after	onset	of	symptoms	confirms	
that	 isolation	of	cases	more	than	2	days	after	onset	of	symptoms	is	insufficient	to	control	the	epidemic.	
Physical	 distancing,	mask	wearing,	 community	 testing	 and	 contact	 tracing	are	 key	 non-pharmaceutical	
interventions	that	are	able	to	stop	transmissions	before	and	around	the	onset	of	symptoms,	and	should	be	
included	in	any	effective	strategy	against	COVID-19.		

Current	 physical	 distancing	 policies	 in	 many	 countries	 already	 include	 self-isolation	 after	 COVID-19	
symptoms,	reduction	of	social	 interactions,	and	use	of	face	masks	in	public	places.	Our	results	on	early	
symptomatic	transmission	underline	the	importance	of	following	existing	guidelines	as	strictly	as	possible	
for	the	first	two	days	of	symptoms,	even	if	symptoms	are	mild	or	it	is	unclear	whether	they	are	compatible	
with	COVID-19.	A	policy	based	on	reinforcing	official	advice	or	suggesting	to	take	extra	precautions	for	the	
first	two	days	of	symptoms	is	advisable	and	likely	beneficial	with	minor	economic	and	social	costs.		

Materials and Methods 

Relation between generation time, incubation period and TOST 

The	generation	time	𝑡R ,	incubation	period	𝑡( 	and	time	from	onset	of	symptoms	to	transmission	(TOST)	𝑡+,*	
by	definition	satisfy	the	equation	

𝑡R = 𝑡( + 𝑡+,* 	

In	terms	of	Pearson’s	correlation	between	these	epidemiological	variables,	this	implies	

𝑐𝑜𝑟(𝑡R, 𝑡() =
𝑠𝑑(𝑡()
𝑠𝑑(𝑡R)

+ 𝑐𝑜𝑟(𝑡+,*, 𝑡()
𝑠𝑑(𝑡+,*)
𝑠𝑑(𝑡R)

	

If	the	generation	time	is	independent	of	the	incubation	period,	this	would	imply	an	anticorrelation	between	
the	latter	and	the	TOST,	i.e.	

𝑐𝑜𝑟(𝑡R, 𝑡() = 0  ⇒ 𝑐𝑜𝑟(𝑡+,*, 𝑡() = −
𝑠𝑑(𝑡()
𝑠𝑑(𝑡+,*)

	

On	the	other	hand,	if	the	TOST	is	independent	of	the	incubation	period,	this	implies	a	positive	correlation	
between	generation	time	and	incubation	period	

𝑐𝑜𝑟(𝑡+,*, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡R, 𝑡() =
𝑠𝑑(𝑡()
𝑠𝑑(𝑡R)

	

Therefore,	 if	 index	 cases’	 incubation	periods	 correlate	more	 strongly	with	 their	 generation	 times,	 this	
suggests	infectiousness	is	driven	more	strongly	by	TOST;	if	they	correlate	more	strongly	with	TOST,	this	
suggests	that	infectiousness	is	driven	more	strongly	by	time	since	infection.	Equivalently,	if	a	model	with	
independent	distributions	for	TOST	and	incubation	period	better	describes	the	pattern	of	infectiousness	in	
the	 data	 than	 one	 with	 independent	 generation	 time	 and	 incubation	 period,	 this	 strongly	 suggests	 a	
correlation	between	the	generation	time	and	the	incubation	period	of	the	disease.	Assuming	no	correlation	
in	the	incubation	periods	of	source	and	recipient	(no	heritability),	it	would	also	imply	a	null	correlation	
between	the	incubation	period	of	the	source	and	the	serial	interval:	

𝑐𝑜𝑟(𝑡+,*, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡,, 𝑡() ∝ 𝑐𝑜𝑣(𝑡,, 𝑡() = 𝑐𝑜𝑣(𝑡+,*, 𝑡() + 𝑐𝑜𝑣(𝑡′(, 𝑡() = 0	

We	define	the	distributions	for	𝑡R ,	𝑡( 	and	𝑡+,*	 to	be	𝑝R ,	𝑝( 	and	𝑝+,*respectively.	 It	is	well	known	that	the	
generation	 time	 distribution	 𝑝R(𝑡)	 plays	 a	 key	 role	 in	 the	 renewal	 equation	 for	 incidence	 𝐼(𝑡) =
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𝑅^ ∫ 𝑑𝜏	𝑝R(𝜏)𝐼(𝑡 − 𝜏)
`
^ 	 (Wallinga	 and	 Lipsitch	 2007;	 Fraser	 2007).	 Similarly,	 the	 TOST	 distribution	

𝑝+,*(𝑡|𝑡()	for	a	specific	incubation	period	𝑡( 	appears	naturally	in	an	alternative	renewal	equation	relating	
the	number	of	newly	symptomatic	individuals	at	time	𝑡	with	incubation	period	𝑡(, 𝐶(𝑡, 𝑡(),	to	the	number	of	
new	infections	at	time	𝑡	from	infectors	with	incubation	period	𝑡( ,	𝐼(𝑡, 𝑡():	

𝐼(𝑡, 𝑡() = 𝑅^ a 𝑑𝜏	𝑝+,*(𝜏|𝑡()𝐶(𝑡 − 𝜏, 𝑡()
`

6`
	

The	 ansatz	 of	 𝐼(𝑡, 𝑡()	 exponentially	 growing	with	 𝑡	 leads	 to	 an	 alternative	 version	 of	 the	 Euler-Lotka	
equation	relating	R0	and	individual	transmission	timing	to	the	exponential	growth	rate	r	:	

1
𝑅^

= a 𝑑𝑝((𝑡()𝑒6b*F
`

6`
⋅ a 𝑑𝜏	𝑝+,*(𝜏|𝑡()𝑒6bE

`

^
	

This	equation	neglects	asymptomatic	infections.	

Data and datasets 

Estimations	of	generation	time	often	use	information	on	the	dates	of	onset	of	symptoms	for	both	index	and	
secondary	cases	from	transmission	pairs	(i.e.	the	empirical	serial	intervals),	combined	with	knowledge	of	
the	 incubation	 period	 distribution	 (Ferretti	 et	 al.	 2020;	 Ganyani	 et	 al.	 2020).	 However,	 an	 implicit	
assumption	in	this	approach	is	independence	between	incubation	period	and	generation	time.	Since	this	is	
precisely	the	assumption	being	tested	in	this	work,	we	restricted	our	analysis	to	more	informative	datasets.	
To	avoid	issues	with	potential	misassignment	of	the	index	case,	we	discarded	transmission	pairs	from	(He	
et	al.	2020;	Xia	et	al.	2020)	belonging	to	clusters	with	more	than	one	secondary	case.	

For	a	direct	assessment	of	the	relationship	between	𝑡( ,	𝑡R 	and	𝑡+,*,	information	on	timing	of	exposure	for	
both	index	and	secondary	case	is	needed,	as	well	as	date	of	symptom	onset	for	the	index	case.	We	were	able	
to	find	only	two	datasets	that	provide	both	the	dates	of	onset	of	symptoms	and	(partial)	information	on	
exposure	intervals	for	both	the	index	case	and	the	secondary	case,	namely	(Ferretti	et	al.	2020)	(40	pairs	
from	different	geographic	areas),	and	(Xia	et	al.	2020)	(32	pairs	from	China).	

To	further	improve	the	accuracy	of	the	inferred	distribution	of	TOST,	we	also	included	datasets	providing	
dates	of	onset	of	symptoms	for	the	index	cases	as	well	as	intervals	of	exposure	for	the	secondary	cases,	
namely	(He	et	al.	2020)	(66	pairs	from	China)	and	(Cheng	et	al.	2020)	(18	pairs	from	Taiwan,	excluding	
asymptomatic	 secondary	 cases).	 The	 latter	 also	 provides	 dates	 of	 onset	 of	 symptoms	 and	 intervals	 of	
exposure	for	contacts	that	did	not	lead	to	infections	(2740	pairs).	

As	a	check	of	robustness	of	our	selection	of	datasets,	we	also	included	data	on	serial	intervals	from	(Zhang	
et	al.	2020)	(35	pairs	from	China).	There	could	be	some	overlap	among	the	three	datasets	of	Chinese	pairs;	
however,	the	empirical	serial	 interval	distributions	are	sufficiently	different	to	assume	that	any	overlap	
represents	a	minority	of	transmission	pairs.	

For	 the	 incubation	 period,	 we	 considered	 a	meta-distribution	 obtained	 by	 averaging	 seven	 lognormal	
distributions	reported	in	the	literature	(Bi	et	al.	2020;	Lauer	et	al.	2020;	Li	et	al.	2020;	Linton	et	al.	2020;	
Ma	et	al.	2020;	Zhang	et	al.	2020;	Jiang	et	al.	2020).	The	probability	of	onset	of	symptoms	𝑃((t)	at	day	t	was	
obtained	by	integrating	this	distribution	between	t-0.5	and	t+0.5.	To	test	the	robustness	of	the	results,	we	
replicated	 them	using	 a	 lognormal	 distribution	with	mean	5.42	days	 and	 standard	deviation	 2.7	 days,	
following	 the	 meta-analysis	 (McAloon	 et	 al.	 2020).	 The	 latter	 provided	 a	 worse	 fit	 to	 our	 data	
(Supplementary	 Table	 5),	 but	 confirmed	 all	 our	 conclusions;	 in	 practice,	 the	 difference	 between	 the	
inferred	distributions	was	small	(Supplementary	Figure	5).	

Likelihood 

We	used	a	maximum	composite	likelihood	approach	similar	to	previous	work	on	COVID-19	(Ferretti	et	al.	
2020;	 He	 et	 al.	 2020).	 Assuming	 that	 the	 transmission	 probability	 per	 contact	 per	 day	 is	 small,	 the	
likelihood	function	for	a	transmission	pair	is	
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𝐿*bfg,(𝛩, 𝛽) ∝ 𝛽 j 𝑒bkF𝑃((𝑑, − 𝑑()
lm

*Fnlo

j 𝑊(𝑑′(|𝑑(, 𝑑,, 𝛩)𝑃((𝑑′, − 𝑑′()
lqm

*qFnlqo

	

where	𝑒r, 𝑒s	 are	 the	extremes	of	 the	interval	of	exposure	 for	 the	 index	case,	𝑑( 	 and	𝑑, 	 are	 the	dates	of	
infection	and	onset	of	 symptoms	for	 the	 index	case,	and	𝑒′r, 𝑒′s, 𝑑′(, 𝑑′,	 are	 the	same	quantities	for	 the	
secondary	 case.	 The	 parameters	 𝛽	 (absolute	 infectiousness)	 and	 𝛩	 (set	 of	 parameters	 of	 the	 time	
distribution)	 depend	 on	 the	 dataset.	We	considered	multiple	 choices	 for	 the	 discretised	 infectiousness	
profile	𝑊(𝑑′(|𝑑(, 𝑑, 𝛩) = 𝛺R*(𝑑′( − 𝑑(|𝛩)	and	𝑊(𝑑′(|𝑑, 𝑑,, 𝛩) = 𝛺uvwu(𝑑′( − 𝑑,|𝛩).	The	growth	rate	𝑟	of	the	
epidemic	was	taken	to	be	0.14/day	for	those	transmission	pairs	sampled	from	the	early	Chinese	outbreak	
as	 explained	 in	 (Ferretti	 et	 al.	 2020),	 and	 0	 otherwise.	 The	 factor	 𝑒bkF	 weights	 an	 otherwise	 uniform	
distribution	for	𝑑( 	within	the	exposure	window	[𝑒r,𝑒s],	to	correct	for	the	fact	that	growing	incidence	in	the	
wider	population	makes	more	recent	infection	more	likely	(except	when	conditioning	on	a	known	infector,	
as	for	the	secondary	case).		

Finally,	 the	 likelihood	 is	 the	 product	 of	 the	 individual	 likelihoods	 over	 all	 transmission	 pairs.	 For	 the	
inclusion	of	case-contact	pairs	from	(Cheng	et	al.	2020)	where	transmission	did	not	occur,	each	such	pair	
contributes	a	multiplicative	factor	𝐿g+*(𝛩, 𝛽) = 𝑒𝑥𝑝y−𝛽∑ 𝛺uvwu(𝑑′( − 𝑑,|𝛩)

lqm
*qFnlqo

{	to	the	likelihood.	

Choice of distributions 

For	the	generation	time,	we	tested	lognormal,	gamma	and	Weibull	distributions	previously	used	in	other	
studies,	 as	well	 as	 generalised	 gamma,	Gompertz,	 inverse	 gamma,	 log-logistic,	Frechet,	Beta’,	 and	Levy	
distributions.	Discretised	distributions	as	a	function	of	the	number	of	days	d	were	obtained	by	integrating	
each	distribution	between	d-0.5	and	d+0.5.	

For	TOST,	we	considered	 the	normal	distribution,	distributions	with	more	weight	 in	 the	 tails	 (rescaled	
Student’s	 t,	 rescaled	Cauchy),	and	asymmetric	distributions	with	Gaussian	and	exponential	 tails	 (skew-
normal,	skew-logistic).	We	considered	both	the	naive	distribution	and	a	version	truncated	at	the	time	of	
infection	 (Supplementary	Table	 5);	 the	 difference	 between	 inferred	 shapes	was	 small	 (Supplementary	
Figure	5).	

For	the	analysis	of	the	TOST	distribution	with	different	tails,	we	considered	a	range	of	shifted	and	rescaled	
symmetric	functions	(normal,	generalised	normal,	Student’s	t,	Cauchy)	and	we	modelled	the	left	and	right	
side	of	the	peak	separately,	assuming	a	continuous	probability	density.	

Finally,	we	modelled	several	options	for	joint	distributions	by	rescaling	the	values	of	TOST	depending	on	
the	 incubation	 period.	 More	 specifically,	 we	 either	 rescaled	 the	 TOST	 either	 relative	 to	 the	 onset	 of	
symptoms	or	to	the	location	parameter	of	the	distribution,	and	we	rescaled	either	both	tails	or	the	left	tail	
only.	 We	 also	 performed	 some	 more	 complex	 rescalings	 (Supplementary	 Table	 5	 and	 Supplementary	
Methods).	Note	that	when	conditioning	on	the	incubation	period,	the	left	tail	of	TOST	distributions	was	
truncated	at	the	time	of	infection.		

Bayesian reconstruction of timing of transmission for individual pairs 

For	each	transmission	pair,	we	assumed	an	equal	prior	probability	of	transmission	on	any	given	day.	The	
pair’s	posterior	probability	of	pre-symptomatic	transmission	therefore	is	the	likelihood	of	transmission	
conditional	on	being	pre-symptomatic,	divided	by	the	overall	likelihood	of	transmission.	To	estimate	the	
uncertainty	on	the	overall	fraction	of	pre-symptomatic	transmissions,	first	we	resampled	the	same	number	
of	pairs	at	random	with	replacement,	then	we	assigned	each	pair	as	pre-symptomatic	transmission	or	not	
according	 to	 the	 abovementioned	 posterior;	 we	 repeated	 the	 process	 10,000	 times	 to	 obtain	 the	
corresponding	 empirical	 distribution.	We	 proceeded	 in	 the	 same	way	 for	 early	 and	 late	 symptomatic	
transmissions.	
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