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Abstract
: Phylogenetic reconstruction is a necessary first step in manyBackground

analyses which use whole genome sequence data from bacterial populations.
There are many available methods to infer phylogenies, and these have various
advantages and disadvantages, but few unbiased comparisons of the range of
approaches have been made.

: We simulated data from a defined “true tree” using a realisticMethods
evolutionary model. We built phylogenies from this data using a range of
methods, and compared reconstructed trees to the true tree using two
measures, noting the computational time needed for different phylogenetic
reconstructions. We also used real data from Streptococcus pneumoniae
alignments to compare individual core gene trees to a core genome tree.

: We found that, as expected, maximum likelihood trees from goodResults
quality alignments were the most accurate, but also the most computationally
intensive. Using less accurate phylogenetic reconstruction methods, we were
able to obtain results of comparable accuracy; we found that approximate
results can rapidly be obtained using genetic distance based methods. In real
data we found that highly conserved core genes, such as those involved in
translation, gave an inaccurate tree topology, whereas genes involved in
recombination events gave inaccurate branch lengths. We also show a
tree-of-trees, relating the results of different phylogenetic reconstructions to
each other.

: We recommend three approaches, depending on requirementsConclusions
for accuracy and computational time. Quicker approaches that do not perform
full maximum likelihood optimisation may be useful for many analyses requiring
a phylogeny, as generating a high quality input alignment is likely to be the
major limiting factor of accurate tree topology. We have publicly released our
simulated data and code to enable further comparisons.
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Introduction
Phylogenetic analysis is a complex task, but one that is  
foundational to many applications in bacterial genetics: molecular 
evolution, outbreak tracing and genomic epidemiology, to name a 
few1,2. The modern genomic analyst faces a bewildering array of 
options at every stage of the process.

The possible number of trees for even a small number of tips is 
enormous3 – for 96 tips there are 10173 possible trees (compare 
this to 1080 atoms in the observable Universe, or even 10120  
possible games of chess). Fortunately, sophisticated software  
methods allow us to sensibly navigate through this space to the 
most likely trees.

Generally the steps taken when analysing a population of  
bacteria that have been whole genome sequenced are as follows. 
Quality control of the raw data must first be performed, after 
which a whole-genome alignment of the sequences is produced.  
The alignment is usually produced by mapping reads to a refer-
ence sequence (of which many likely exist), but may also be  
obtained by de novo assembly followed by whole-genome align-
ment (either by progressive local alignment, or through multiple 
sequence alignment of orthologous genes and intergenic regions). 
Many methods are available to map reads to a reference,  
assemble reads into contigs and align contigs or genes, and each 
method will typically have many options. This alignment is the key 
input for phylogenetic inference software. Even more methods,  
with yet more complex options, exist to determine the most  
likely phylogeny given a sequence alignment. Alternatively, 
one may forgo alignment altogether, and opt instead for a k-mer  
distance-based approach followed by a neighbor joining tree.

Understandably, this complexity and range of choice means 
that methods sections of papers using phylogenetic analysis are 
often different between studies. This disparity is likely due to  
different software preferences (familiarity, speed and usability 
being major factors in this choice), rather than an informed choice 
based on the biological question and resources to hand. The rela-
tive merits of different approaches are difficult to objectively 
assess, even after careful reading of the original method man-
uscripts. The potential effect of different combinations of  
approaches at each step in the process between raw sequence  
reads and the final phylogeny has seldom been explored.

It is therefore desirable to provide a comparison between  
phylogenetic methods that is focused on methods’ ability to answer 
the biological question at hand. Some previous attempts have been 
made, using either simulated data, experimental evolution, or an 
assumption that the maximum likelihood phylogeny is correct. 
One such study assessed the running times and likelihood of trees  
drawn from simulated data using two pieces of software (RAxML 
and FastTree), assuming the model of sequence evolution is 
correct4. A more recent, larger study in eukaryotes compared  
these an IQ-TREE in terms of best likelihood on both species and 
gene trees5. Other small-scale comparisons include a comparison 
of read-to-tree pipelines with other pieces of software6, and the 
production of “well characterised” reference datasets for testing  
methods7. A recent study instead used an Escherichia coli  

hypermutator to conduct experimental evolution along a defined 
balanced phylogeny, and then by sequencing the strains at the 
tips, the authors compared the ability of 12 combinations of  
methods to reconstruct the correct phylogenetic relationship8. 
An overview of how the most commonly used combinations of  
methods perform in terms of phylogeny accuracy, as opposed 
to best likelihood, does not yet exist. Comparison of likelihoods  
alone assumes that we know the true evolutionary model, and 
doesn’t allow us to evaluate in what way the tree is wrong. In this 
paper we present a simulation-based analysis of the speed, ease 
of use, and accuracy of some of the common ways to obtain a  
phylogeny from bacterial whole genome sequence data. We define 
a true tree, from which we produce whole genome sequence 
data using realistic simulations (thereby avoiding the problem 
of circularity of model choice). A range of methods are then  
evaluated for accuracy using appropriate metrics in tree space. 
We hope to provide some insight into which approaches should 
be favoured in certain settings while acknowledging that our  
simulations are far from comprehensive. We also make our 
code and simulated data publicly available in the hope that this 
might inspire further method comparisons aimed at different  
settings.

Methods
Simulating bacterial populations – assemblies and 
alignments
We wished to simulate genomes in a realistic way, without using 
the same model of evolution that any one software package  
uses to compute tree likelihoods or sequence distances in order to 
reconstruct the tree. This would be circular, and would result in  
that software package necessarily performing best.

We used Artificial Life Framework v1.0 (ALF)9 to simulate  
evolution along a given phylogenetic tree, using the 2 232  
coding sequences in the Streptococcus pneumoniae ATCC 
700669 genome10 as the MRCA. As well as modeling SNP  
evolution, ALF also allows for short insertions and deletions 
(INDELs), gene loss and horizontal gene transfer events 
which occur in real populations but are usually not included in  
phylogenetic models. We used a phylogeny (Figure 1), originally  
produced by Kremer et al.11 from a core genome alignment  
of 96 Listeria monocytogenes genomes from patients with  
bacterial meningitis, possessing a number of qualities we wished  
to be able to reproduce: two distinct lineages (also making  
midpoint rooting suitable, and negating the strong dependence 
on correct rooting implicit in the Kendall and Colijn metric), 
several clonal groups within each lineage, long branches and a  
polyphyletic population cluster (population clusters were  
estimated from a core genome alignment using Bayesian  
Analysis of Population Structure v6.0 (BAPS)12). We define N as 
the number of strains in the study and M as the number of aligned 
sites.

We then tried to pick realistic parameters for the simulation 
run with ALF. To estimate rates to use in the generalised time- 
reversible (GTR) matrix and the size distribution of INDELs, 
we first aligned S. pneumoniae strains R6 (AE007317), 19F  
(CP000921) and Streptococcus mitis B6 (FN568063) using  
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Figure 1. The phylogeny inferred by Kremer et al.11 used as the true tree in simulations. Tips are coloured by Bayesian Analysis of 
Population Structure (BAPS) cluster inferred from the core genome alignment.

Progressive Cactus v0.013. This whole genome alignment  
allowed calculation of SNP and INDEL rates across recent  
S. pneumoniae evolutionary history. We used previously deter-
mined parameters for the rate of codon evolution14, relative rate 
of SNPs to indels in coding regions15, rates of gene loss and hori-
zontal gene transfer16 when running the simulation. We then used 
ALF with these parameters to simulate the evolution of coding  
sequences from the root genome along the given phylogeny. In 
parallel, we used DAWG v1.217 to simulate evolution of inter-
genic regions using the same GTR matrix parameters and previ-
ously estimated intergenic SNP to INDEL rate15. We combined  
the resulting sequences of coding and non-coding regions at  
tips of the phylogeny while accounting for gene loss and  
transfer, and finally generated error prone Illumina reads from  
these sequences using pIRS v1.1118.

To generate input to phylogenetic inference algorithms, we 
created assemblies and alignments from the simulated reads. 
We assembled the simulated reads into contigs with vel-
vet v1.2.0919, then improved and annotated the resulting  
scaffolds20. We generated alignments by mapping reads to the 
TIGR4 reference using bwa-mem v0.7.10 with default settings21, 
and called variants from these alignments using samtools v1.2 
mpileup and bcftools call22. We used Roary 1.00700123 with a 95%  
BLAST ID cutoff to construct a pan-genome from the annotated 
assemblies, from which a core gene alignment was extracted. 
We then created alignments by two further methods. For an  
MLST alignment we selected seven genes at random from 
the core alignment (present in all strains) which had not been 
involved in horizontal transfer events. For a Progressive Cactus  
alignment, we ran the software on the assemblies using default  
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settings, and extracted regions aligned between all genomes  
from the hierarchical alignment file and concatenated them.

Methods of phylogeny reconstruction
Using the nucleotide alignments described above as input,  
we ran the following phylogenetic inference methods:

•    RAxML v7.8.624 with a GTR+gamma model  
(-m GTRGAMMA).

•    RAxML v7.8.6 with a binary+gamma sites model  
(-m BINGAMMA).

•    IQ-TREE v1.6.beta425 using a GTR+gamma with ascertain-
ment bias (-m GTR+ASC+G) (denoted slow) and using 
GTR and the -fast option (denoted fast).

•    FastTree v2.1.926 using the GTR model (denoted slow) and 
using the -pseudo and -fastest options (denoted fast).

•    Parsnp v1.227 on all assemblies using the -c and -x options 
(removing recombination with PhiPack).

We attempted to run the REALPHY v1.12 pipeline6, but it was 
not computationally feasible due to the slow mapping step (using  
bowtie2) not being parallelisable by strain.

We also created pairwise distance matrices using:

•    Mash v1.028 (default settings) between assemblies.

•     Andi v0.9.229 (default settings) between assemblies.

•     Hamming distance between informative k-mers using a sub-
sample of 1% of counted k-mers from assemblies30.

•     Hamming distance between rows of the gene presence/
absence matrix produced by Roary (using 95% blast ID 
cutoff).

•     JC and logdet distances between sequences in the align-
ment, as implemented in SeaView v4.031.

•     Distances between core gene alleles (add a distance of zero 
for each core gene with identical sequence, add a distance 
of one if non-identical), as used in the BIGSdb genome 
comparator module32.

•     Normalised compression distance (NCD)33, using PPMZ as 
the compression tool34.

For all the above distance matrix methods we then constructed a 
neighbor joining (NJ) tree, a BIONJ tree35 using the R package ape, 
and an UPGMA tree using the R package phangorn. In the compari-
son we retained the tree building method from these three with the 
lowest distance from the true tree (see below).

Quantifying differences between phylogenetic tree 
topologies
To measure the differences in topology between the produced  
trees (either between the true tree and an inferred tree, or between 
all different inferred trees) we used two measures. As a sensitive 

measure of changes in topology we used the metric proposed 
by Kendall and Colijn (KC)36 setting λ = 0 (ignoring branch 
length differences). We compared the true tree against randomly  
generated trees with a midpoint giving 286 (95% CI 276–293) 
as a comparison to poor topology inference. To illustrate how  
these numbers correspond to actual changes in topology we used 
the plotTreeDiff function from the treespace package for three rep-
resentative comparisons (see interactive treespace plots or static 
Supplementary Figure 1–Supplementary Figure 3 (Supplementary 
File 1)).

For trees distant from the true tree by the KC metric it was use-
ful to test whether the tree was accurate overall and only a few 
clade structures were poorly resolved, or whether the tree failed to  
capture important clusters at all. We therefore checked the  
clustering of the BAPS clusters from the true alignment on each 
inferred tree. We did this with both the primary BAPS cluster, 
which separates the two main lineages, and the secondary BAPS 
clusters which define finer structure in the data and includes a  
polyphyletic cluster. For each BAPS cluster, we assessed 
whether tips were clustered correctly by checking whether it 
was still monophyletic in the inferred tree, and whether the  
polyphyletic cluster was still split in the same way.

Core gene trees from real data
We used a previously generated core genome alignment from 
616 S. pneumoniae samples isolated from the nasopharynx of  
asymptomatically carrying children in Massachusetts37–40. We 
ran IQ-TREE on the whole alignment using a GTR model  
(-m GTR). We then aligned each core gene at the codon level with  
RevTrans v1.1041, and then ran IQ-TREE on each nucleotide  
alignment using the same model. We calculated the KC metric with 
λ = 0 and λ = 1 between all these pairs of trees, and used treespace 
to perform multi-dimensional scaling in two dimensions to  
visualise the pair-wise distances42–44.

Results
Table 1 and Figure 2 show the results of our simulations,  
ranked by their KC distance from the true tree. We note that 
all methods except for the NCD were able to recapitulate the 
population clusters as defined by BAPS. For construction of a  
maximum likelihood tree, RAxML is one of the most heavily 
used and efficient software methods available. As expected, this 
was the most accurate method tested, and also the most resource 
heavy (apart from whole-genome alignment, discussed later).  
RAxML’s model is a close fit to the model used to generate the 
data, and this model is expected to be a good model of evolu-
tion. There was no significant difference in the likelihood of 
the fit of the inferred tree and the true tree under this model  
(LRT = 2.34; p = 0.13). When using an alignment against a  
different reference genome from the one we actually used in the  
simulations, as is more likely to be the case in real alignment  
production, RAxML was tied for accuracy with IQ-TREE which 
also produced the same tree. In our simulations IQ-TREE had 
better resource requirements than RAxML, though over a range  
of data the programs are likely comparable.
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Table 1. Accuracy and resource usage of phylogenetic reconstruction methods, ordered by Kendall and Colijn (KC) 
metric score. The method lists the best combinations of all alignment with phylogenetic method, and distance matrices with 
phylogenetic methods. Three scores of accuracy of the phylogeny are shown; the KC metric is described in the text, the Bayesian 
Analysis of Population Structure (BAPS) scores are a tick if the clusters are as in the true tree, otherwise which clusters are wrong. 
Parallelisability shown is that built into the software, “completely” is when every value in a distance matrix is independent so can be 
parallelised up to N 2 times.

Method KC 
(0-286)

BAPS 1 BAPS 2 CPU time Memory Overheads Parallelisability Accessory 
genome?

RAxML + close 
reference alignment 4.63 ✓ ✓ 806.5 minutes 2.7 Gb Mapped 

alignment Pthreads No

IQ-TREE (slow) 
+ alignment 11.2 ✓ ✓ 165 minutes 564 Mb Mapped 

alignment Pthreads or MPI No

RAxML 
+ alignment 11.2 ✓ ✓ 587 minutes 3.0 Gb Mapped 

alignment Pthreads No

IQ-TREE (fast) 
+ alignment 11.3 ✓ ✓ 14.6 minutes 1.1 Gb Mapped 

alignment Pthreads or MPI No

Parsnp 14.0 ✓ ✓ 42.5 minutes 2.6 Gb Assemblies Threads No

FastTree 
+ alignment 16.0 ✓ ✓ 189 minutes 10.6 Gb Mapped 

alignment
Threads 
(up to 4) No

RAxML + core 
gene alignment 18.6 ✓ ✓ 29.2 minutes 154 Mb Core gene 

alignment Pthreads No

NJ + SNPs 
alignment 20.5 ✓ ✓ Negligible Negligible Mapped 

alignment No No

BIONJ + mash 
distances 51.7 ✓ ✓ 0.75 minutes 10 Mb Assembly Completely Yes

RAxML + 7 gene 
MLST alignment 62.6 ✓ ✓ 1.4 minutes 19 Mb Assembly Pthreads No

BIONJ + andi 
distances 66.0 ✓ polyphyly 7.48 minutes 290 Mb Assembly Completely Yes

RAxML + Cactus 
alignment 67.2 ✓ ✓ 9 600 minutes 37.4 Gb Assembly Threads No

RAxML + gene 
presence/absence 77.3 ✓ polyphyly 4.28 minutes 20 Mb Core gene 

alignment Threads Yes

BIONJ + k-mer 
distances 89.6 ✓ ✓ 37.3 minutes 180 Mb Assembly Threads Yes

BIONJ + BIGSdb 150 ✓ polyphyly 0.48 minutes Negligible Assembly Completely No

UPGMA + NCD 210 ✓ all 1 040 minutes Negligible Assembly Completely Yes

Partial alignment methods or alternative reconstruction 
give good trees
Knowing the quality of maximum likelihood trees, one approach 
a user may take to reduce the large computational require-
ments is to reduce the number of sites M that are included in the  
alignment. Some common ways this can be achieved are either 
by finding clusters of orthologous genes and only using sites 
from “core” genes (those present in every sample), or by using an  
alignment of the pre-defined MLST genes. In this test we found 
that using a core genome alignment slightly reduced the accu-
racy, whereas using an MLST alignment of seven genes reduced 
the accuracy greatly, as only a small proportion of the genomic  
variants are now used in the inference. 

Other than as a way to reduce computational burden, core genome 
alignment may increase the accuracy of the input alignment by 

excluding mismapping of repetitive regions and minimising bias 
from missing data in accessory genes. However, there is the issue that 
when a variant is present in a region overlapped by two genes it will  
be erroneously represented twice. When performing phyloge-
netic analysis, the user should consider whether they want to 
include the accessory genome in their inference (final column in  
Table 1). In this simulation, evolution of the core and accessory 
genome are correlated, so that including the accessory genome 
improves accuracy over using core genome alone. In a species 
such as Streptococcus pneumoniae where multiple distinct line-
ages are maintained over time, the core and accessory evolution  
tend to be correlated in this way45. In other species, or within a 
lineage, the accessory genome may be dominated by mobile  
elements such as transposons and phage. Including these in the 
alignment will not give a good estimate of vertical evolution-
ary distance between strains. In other situations the core and  

Page 6 of 13

Wellcome Open Research 2018, 3:33 Last updated: 23 MAR 2018



accessory genome may both carry signals of vertical evolution, 
but they may be discordant with each other due to different evo-
lutionary processes acting on each type of variation. A binary  
model of evolution can be used to build a maximum likelihood 
tree based on accessory gene gain and loss (RAxML + gene  
presence/absence), but we found that its accuracy is much  
lower than a model of SNP variation within genes. A possibility 
for combining these two data types would be to have separate  
model partitions for SNP variation and gene gain/loss.

To further investigate core genome alignment, we compared  
individual gene trees to a core genome tree in a real population 
of S. pneumoniae genomes. We created trees from all core genes, 
and compared them by projecting pairwise KC distances into two 
dimensions (Figure 3). The figure shows that the core genome 
tree behaves like an ‘average’ of the individual core gene tree  
topologies, without being biased by the bad topologies pro-
duced at distances far from the center of the main cluster. Look-
ing at the distant topologies, we found that the genes giving these 
trees were mostly ribosomal related proteins. These alignments  

contained very little variation due to their highly conserved func-
tion, providing little information for phylogenetic resolution – the 
root and ancestral part of these topologies were different from the 
core genome alignment tree, likely due to random placement of 
nodes, giving highly divergent KC distances. The gene trees clos-
est to the whole core gene alignment tree were those with the most  
variation. When we included branch lengths in the distance  
measure (λ = 1 in the KC metric), very short branch lengths contrib-
ute far less to the tree distance than longer lengths, and the ribos-
omal genes are no longer outliers. Many of the furthest gene trees 
from the core genome tree are from genes known to be involved 
in recombination events46, as shown in Supplementary Table 1  
(Supplementary File 1). Recombinations result in a large number 
of SNPs against a reference; because phylogenetic methods 
assume vertical evolution, recombination tends to inflate esti-
mated branch lengths. The best practice is to try to remove these 
regions before performing phylogenetic reconstruction47. When 
picking an MLST scheme for an organism, given a choice of 
genes to use, these phylogenetic signals may be a useful additional  
consideration.

Figure 2. Ordered accuracies from Table 1, showing the CPU time required for each tree. There are large changes in accuracy between 
the alignment and distance methods, and again between two inaccurate distance methods.
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Figure 3. A multidimensional scaling plot of the Kendall and Colijn (KC) distances between all core gene trees from a real population 
of 616 S. pneumoniae genomes. Top: topology distances (λ = 0); bottom: branch length distances (λ = 1). The core genome tree from 
the concatenated alignment is shown in yellow; trees from ribosomal proteins, which tended to have different topologies due to their lack of 
variation, are shown in blue. The top twenty divergent trees by branch length are listed in Supplementary Table 1 (Supplementary File 1).
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We also evaluated the quality of a phylogeny drawn from a  
progressiveCactus alignment13, which performed best in a  
comparison between whole genome aligners48. Whole genome  
alignment uses linear sequences in an annotation-free manner, 
and by breaking the alignment job into smaller local regions can  
align sequences in the presence of structural variation such as  
gene gain and loss, inversions and transversions – both core and 
accessory elements are aligned. In this comparison, the core 
genome alignment we extracted was smaller than that produced 
by Roary, and therefore produced a less accurate phylogeny. 
This class of methods is therefore best suited to comparing small  
numbers of genomes from larger evolutionary distances (across 
species), rather than large numbers of more closely related  
genomes.

In the search for greater computational efficiency, rather than 
changing the alignment one may instead opt to use a differ-
ent method of phylogenetic inference. One piece of software 
which aims to infer phylogeny faster than a maximum likelihood  
method, albeit at the expense of accuracy, is FastTree26. In our 
test FastTree ran four times faster than RAxML, without much  
decrease in accuracy. We found little difference in accuracy when 
using the fast and slow options. The scaling of CPU time in  
FastTree by number of sequences is more favourable than 
RAxML, so as the number of sequences increases the relative 
speedup of FastTree will also increase. It should also be noted that  
FastTree obtains around a 2x speedup from using four CPUs  
using OpenMP, whereas RAxML can use around 16 threads at close 
to 100% efficiency.

Parsnp27 produces a core genome alignment by rapidly finding 
maximal exact matches (as in nucmer) which can include 
both genes and intergenic regions. In our test we found that it  
performed even better than FastTree while using less CPU time. 
However, the method does not deal well with mobile elements 
or recombination, so caution should be used with real datasets  
where this variation is prevalent.

Finally, we saw very promising results when using the “fast”  
mode of IQ-TREE, currently available in beta. Reconstruction in 
this case was as accurate as a full maximum likelihood method,  
and completed quickly with modest memory requirements. 
Once available as a stable release, this may prove to be the most  
accurate way to efficiently infer large phylogenies.

Genetic distance based approaches rapidly give a rough 
tree topology
Early phylogenetic methods involved drawing a neighbour  
joining tree from a matrix of pairwise distances between all 
tips. This method is fast and simple. When we used distances  
calculated from the same alignment as RAxML this approach 
was somewhat worse than the reduced number of sites or reduced  
accuracy methods above, but still gave a good overall topology 
– better than an ML tree from the MLST genes. A tree can also 
be drawn from distances using BIONJ, which by using a simple  
evolutionary model can be expected to provide trees with more 
accurate topologies than NJ35. Another alternative is UPGMA, 

though as a hierarchical clustering method it would not be  
expected to recover the same topology as a phylogenetic method 
(but perhaps the same clusters). However, in the present era, we 
see the main advantage of this class of methods as being able to 
avoid having to create an alignment from mapping49. If one is able 
to calculate genetic distances from assemblies or even directly  
from reads, the relatively costly and challenging step of creating 
a large multiple sequence alignment can be avoided. Although  
O(N2) distances need to be evaluated, these calculations are 
independent so the process is trivially parallelisable. We tried  
creating trees from five methods which can evaluate pairwise  
distances rapidly: mash, andi, k-mer distances, BIGSdb and the 
normalised compression distance (NCD).

The NCD is a general method to compare the similarity  
between any two data objects33. The NCD between two objects 
x and y (in this case the sequence of assemblies) is computed as  
follows:

( )
( ) ( ) ( )

( ) ( )
, min ,

NCD ,
max ,

Z x y Z x Z y
x y

Z x Z y

 −  
=

  

where Z (x) is the size after compression of file x. The rationale 
is that the more two sequences are similar to each other, then  
the more the compression method will be able to use this  
similarity to reduce the overall size of the concatenated file  
towards the lower limit of the size of the compressed individ-
ual files. We used PPMZ as the compressor to avoid issues with  
minimum block size34, but only recovered the largest scale  
feature of the two main lineages in the topology. This suggests 
the the NCD is not well suited to finding distances between sets 
of closely related sequences, but may perform better with more  
distant genomes. PPMZ may not be the best compressor overall  
due to its long run time, but we did not investigate this further.

BIGSdb is a database designed to store bacterial sequences, 
and perform pre-defined analysis rapidly on them32. Trees from 
genomes in this database can be produced with the GenomeCom-
parator module. This works by comparing the alleles of core gene  
sequences, increasing the distance between two genomes by one 
for each allelic difference between the genes that they have. The  
potential advantage of this is that recombination events will  
correctly be counted as a single evolutionary change, rather  
than as multiple separate SNP differences. However, this approach 
also limits resolution and inference of intra-cluster distances, and 
produced one of the worst topologies in our tests.

Finally, we used k-mer distances30, mash28 and andi29 to cre-
ate distance matrices. andi counts the number of mismatches  
between equally spaced maximal exact matches between a pair 
of sequences. mash was partly designed as an improvement to 
the accuracy of andi, and instead uses the MinHash algorithm to  
rapidly approximate the Jaccard distance between the sets of  
k-mers in each assembly. This is also the distance approximated  
by our k-mer method, but is many-fold more efficient due to the  
use of MinHash. In our test, we found that mash performed the  
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best out of any distance-based measure in accuracy and efficiency, 
but was still significantly less accurate than the alignment-based 
methods. Considering the ease of use and efficiency of mash, 
its ability to recover population clusters means that it could be  
recommended as the tool of choice for first-pass analysis.

Discussion
We have analysed the ability of a range of phylogenetic inference 
methods to reproduce the topology and clustering of a known 
tree when given realistic simulated data derived from the same  
known tree. Figure 4 shows an alternative presentation of our 
results: a tree-of-trees, also showing the ways in which some of the 
incorrect trees may be similar to each other.

Overall, we found that modern maximum likelihood methods 
and a good alignment can obtain an accurate phylogeny in  
reasonable runtimes; using approximate phylogeny methods 
with a good alignment is the next best thing, followed by reduc-
ing the alignment size. The best quality results had the longest  
computational time requirements, consistent with our mechanis-
tic understanding of how phylogenetic inference should perform. 
We would expect maximum likelihood approaches to do well 
on molecular data, and to take more time than distance based  
methods50. For rough analysis, genetic distances as produced 
by mash can be used for clustering and to produce a rough  
coarse-grained topology. Consideration of whether to include the 
accessory genome in the inference or to analyse it separately is 
important, and will be dependent on the species and lineage being 
studied.

We also directly compared a range of evolutionary models, run 
both using BIONJ and ML (Supplementary Table 2; Supplementary  
File 1). As there are a huge number of sites, and the sites are each 

low-dimensional, we are much better informed about the site 
evolution model than the tree. It’s easier to get the tree wrong,  
and hence the inference method used is a more important consid-
eration for tree accuracy. We do note that simpler evolutionary 
models require less CPU time to run for comparable accuracy.  
Although maximum likelihood methods cope with missing data 
much better than distance methods, the extensive missing calls 
in these simulations (20–40% of sites, due to accessory genes)  
did not prevent the distance based methods from giving an  
approximate topology.

For a small number of samples or if computational resources are 
not a concern, and for phylogenetically focused questions such 
as model comparison, then a maximum likelihood method is  
the best choice. However a key point is that in many cases,  
especially when using a large number of genomes and especially  
across species with little phylogenetic signal, the phylogeny 
building software is not the limiting factor in accuracy of the  
resulting tree. The alignment used is crucial: the quality of 
sequencing and mapping, whether mobile elements have been 
masked, and how much confounding signal from recombination 
and homoplasy can be removed all have important effects on the  
quality of the final tree. In many cases the observed data are not 
consistent with a single phylogenetic tree, so rather than aim-
ing for the “best” tree it is important to assess uncertainty 
in the tree. Bayesian methods are available but are slow and  
complex51,52. In many cases we would therefore recommend 
using a faster method such as IQ-TREE’s fast mode or FastTree,  
combined with bootstrap analysis to more efficiently estimate 
the uncertainty in tree topology53. We do note that the bootstrap  
estimate may be difficult to interpret, as it does not behave as a 
standard confidence interval due to the implicit assumption that 
sites are independent54.

Figure 4. Tree of tree methods. Using the Kendall and Colijn (KC) metric between all the inferred phylogenies in Table 1 to create a pairwise 
distance matrix, an neighbor joining (NJ) tree created from this matrix. This shows how the topologies from all methods are related to each 
other (a tree-of-trees, or supertree). The true tree is in orange at the top, and four classes of methods are labeled. For alignment-based 
methods the mapping of reads to the TIGR4 reference was used, unless explicitly stated. We also performed multi-dimensional scaling of 
these distances in two dimensions to show how the methods clustered (see interactive treespace plots or static Supplementary Figures 4; 
Supplementary File 1).
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For truly enormous datasets, particularly in cases where produc-
ing an alignment is the limiting step, even these approximate 
methods may prove intractable. In which case using pairwise  
distances from mash is an alternative approach. One possible  
problem with mash is that closely related sequences can have a  
distance of zero, but this can be solved by increasing the  
sketch size with little extra computational burden. We also note 
that though the MinHash distance is an approximation, it is a  
good one, and unlikely to be the limiting factor in these analy-
ses. Instead, accessory genome and mobile elements may be 
a problem. In these simulations we also tested mash using the 
core alignment directly, but this resulted in a less accurate tree  
(KC distance = 71.6); the k-mers sampled by mash do not  
utilise the information of homology implicit in each column of  
the alignment.

This work is of course somewhat limited in initial scope. 
While we tried to choose a true tree with common features, the  
simulations here are limited, with parameters chosen to model 
a single species. We also made the choice to ignore branch  
length differences (though these can as easily be compared) as 
we think that topological distance is more intuitive, especially for 
larger differences.

In an age of a bewildering array of options for this analysis and 
few available direct comparisons we hope that our results are  
nonetheless instructive, and that these methods can continue to  
be compared using other benchmark datasets as they appear.

Data availability
Data can be downloaded from the following URLs:

•   Code: https://github.com/johnlees/which_tree (GPLv2  
license)

•   Inferred trees: https://dx.doi.org/10.6084/m9.figshare. 
548346455

•   Interactive treespace plots: https://dx.doi.org/10.6084/m9. 
figshare.592330056

•   Simulation parameters and results (including true alignments 
of all genes, assemblies and annotations from simulated  
reads): https://dx.doi.org/10.6084/m9.figshare.548346157
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Supplementary material
Supplementary File 1 - File contains the following supplementary tables and figures:
Click here to access the data.

Supplementary Table 1: Twenty gene trees most distant from the core genome tree in 616 Streptococcus pneumoniae genomes when using 
the KC metric with λ = 1, which only considers branch lengths. The name of the gene, or its name in the S. pneumoniae ATCC 700669 
genome is shown with the annotated function. Whether each gene was found to be a recombination hotspot in the PMEN1 clone, and 
whether the hotspot has been specifically described previously are also shown

Supplementary Table 2: Distance to the true tree for comparable models and methods. Three evolutionary models available both in IQ-tree 
and SEAVIEW, which were then used to build phylogenies using maximum likelihood (ML) or distances (BIONJ) respectively. Each model 
has an increasing number of degrees of freedom (df). The KC distances for topology (λ = 0) and branch length (λ = 1) are show Kendall and 
Colijn (KC) along with the CPU time used for ML inference

Supplementary Figure 1: Applying plotTreeDiff between true tree and the closest reconstruction, RAxML + 23F aln (distance 4.35). See 
top an for explanation of plotTreeDiff.

Supplementary Figure 2: Applying plotTreeDiff between true tree and one a little further away, the fast IQ-tree (distance 11.3). See top 
for an explanation of plotTreeDiff

Supplementary Figure 3: Applying plotTreeDiff between the true and furthest, UPGMA + NCD (distance 210.5). See top for an explana-
tion of plotTreeDiff.

Supplementary Figure 4: A multi-dimensional scaling plot of the distances between all methods projected into two dimensions. This view 
is zoomed, so the worst methods are outside the plot boundaries.
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