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Estimating Transmission from Genetic and
Epidemiological Data: A Metric to
Compare Transmission Trees
Michelle Kendall, Diepreye Ayabina, Yuanwei Xu, James Stimson and Caroline Colijn

Abstract. Reconstructing who infected whom is a central challenge in
analysing epidemiological data. Recently, advances in sequencing technol-
ogy have led to increasing interest in Bayesian approaches to inferring who
infected whom using genetic data from pathogens. The logic behind such ap-
proaches is that isolates that are nearly genetically identical are more likely
to have been recently transmitted than those that are very different. A number
of methods have been developed to perform this inference. However, testing
their convergence, examining posterior sets of transmission trees and com-
paring methods’ performance are challenged by the fact that the object of
inference—the transmission tree—is a complicated discrete structure. We in-
troduce a metric on transmission trees to quantify distances between them.
The metric can accommodate trees with unsampled individuals, and high-
lights differences in the source case and in the number of infections per in-
fector. We illustrate its performance on simple simulated scenarios and on
posterior transmission trees from a TB outbreak. We find that the metric re-
veals where the posterior is sensitive to the priors, and where collections of
trees are composed of distinct clusters. We use the metric to define median
trees summarising these clusters. Quantitative tools to compare transmission
trees to each other will be required for assessing MCMC convergence, ex-
ploring posterior trees and benchmarking diverse methods as this field con-
tinues to mature.
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1. INTRODUCTION

Understanding who infected whom is a key task of
epidemiology. High quality reconstruction of who in-
fected whom in an outbreak of an infectious disease al-
lows public health workers to determine whether there
are individuals or locations causing high numbers of
transmission, to identify those individuals at risk, and
to determine which individual characteristics are asso-
ciated with infectiousness. Ultimately, this knowledge
leads to improved infection control and outbreak man-
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agement. However, outbreak reconstruction is time-
consuming, expensive and uncertain. It often must rely
on individuals’ recollections of those with whom they
have had contact, as well as individual health records,
locations in which infection may have spread, and so
on. Particularly in the case of sexually transmitted in-
fections and blood-borne infection, this information
is sensitive and case identification is challenging. For
chronic infections, transmission may have occurred
a considerable time before diagnosis, making recon-
structing transmission even more challenging.

For these reasons and others, there is considerable
interest in using genetic data from rapidly evolving
viruses and even bacteria in outbreak reconstructions.
Recent advances in sequencing technology have meant
that it is feasible to obtain whole-genome RNA or DNA
sequences from pathogens even in real time during out-
breaks [30, 11], and these data can be used to perform
outbreak reconstructions, or to refine reconstructions
based on traditional epidemiology. The central idea be-
hind genomic approaches to outbreak reconstruction is
that genetic polymorphisms in viruses or bacteria ac-
crue even in the short time frame of the outbreak; by
comparing cases’ pathogen sequences, it is possible
to refine estimates of who infected whom. For exam-
ple, if cases A and B were in close contact at a time
when A was infectious, epidemiological investigations
alone would likely conclude that A infected B, but if
the pathogen sequences are very different genetically,
it would rule this out and another infector would be
sought to explain B’s infection.

However, inference of transmission using genetic se-
quences is challenging. It relies not only on a knowl-
edge of the likely time between an individual becom-
ing infected and infecting others (the generation time),
and on the likely time between becoming infected and
seeking treatment (leading to being known to the health
care system)—this information is used in almost any
reconstruction of transmission. Incorporating genetic
data also requires a model of how mutations occur: at
the time of transmission, or continuously throughout
the life of the pathogen, and at what rate (clocklike
evolution or a more general model). It requires, im-
plicitly or explicitly, a model of the dynamics of the
pathogen within and between hosts: is more than one
lineage present, and how many pathogen particles are
transmitted upon infection? Finally, it is rare that health
authorities identify every case in an outbreak, and han-
dling unknown cases raises additional challenges. Ide-
ally, genetic information is integrated with epidemio-
logical and clinical information to obtain the best pos-
sible estimates of who infected whom.

Interest in the statistical tools necessary to solve
these problems is growing rapidly, and diverse methods
have been developed. These differ in their statistical
approach: whether they have an explicit spatial struc-
ture [27, 26]; whether they allow multiple introduc-
tions of the pathogen into the community being anal-
ysed [18, 26, 38], or not [28, 36]; whether they do not
allow multiple distinct infections of individual hosts
[38, 15]; whether they consider the population dynam-
ics of the pathogen in the host [23, 36], or not [18, 27];
whether they use a phylogenetic tree to capture rela-
tionships among the pathogen sequences [8, 9, 21], or
infer the phylogenetic tree and transmission tree simul-
taneously [15, 23, 7]; and whether they handle the issue
of unknown cases and/or cases without genetic data [8,
23, 18, 15]. Table 1 lists some of the available tools
with respect to these variations. While there are a num-
ber of exemplars illustrating the relationship between
genomic data and transmission (examples include [37,
14, 24, 12]), we focus on Bayesian inference methods
aiming to provide tools for use by the community.

The data integration needs of this field motivate the
use of Bayesian approaches, as they provide a natu-
ral framework for integration of covariates such as lo-
cation, clinical indications of infectiousness and other
variables, and avoid the need to use summary statis-
tics of the data. However, by their nature, Bayesian
approaches produce a posterior collection of inferred
transmission trees alongside posterior distributions of
scalar parameters. Understanding the nature of poste-
rior uncertainty in a complex object such as a transmis-
sion tree is not straightforward. For example, do pos-
terior estimates group into some trees in which case A
was infected first (we say “A is the source”), A then
infected B, and B went on to infect several others, ulti-
mately causing the outbreak, versus trees in which case
B is the source, B infected D, and D then caused the
other infections? Do the data support distinct alterna-
tive stories of the outbreak, or is the posterior unimodal
in the space of transmission trees? Which transmission
chains had more unsampled cases? Typically, the frac-
tion of correctly inferred infectors, or the fraction con-
sistent with an external set of data, is used as a measure
of the quality of inferred transmission trees. However,
this does not capture “how wrong” the incorrect links
are, and does not allow informative comparisons either
within a posterior set of trees or of the performance of
different methods. In addition, summarising the poste-
rior is typically achieved using the Edmond’s consen-
sus tree [13, 9, 23]: a consensus graph is constructed
by finding the most common infector for each infectee,
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TABLE 1
Some available methods for reconstructing transmission trees using genetic data. “Multi. intro” refers to whether the method accounts for
multiple introductions of a pathogen into a community, distinguishing whether all cases are part of one outbreak or several smaller ones.
“Multi. seq” refers to whether the method allows for more than one sequenced isolate per case; often this does not mean multiple distinct
infections (re-infection), but only monophyletic clonal instances. “In-host” refers to whether the method admits pathogen diversity within
individual hosts; if yes, coalescent or branching events may not correspond to transmission events. “Unsamp” refers to whether there may
be inferred cases that were not known to health authorities and not included in the dataset (in contrast to known cases without sequences).
“Bneck > 1” refers to whether pathogen diversity can be transmitted (if yes) or whether only one unique sequence is transmitted from case
to case (if no). “Phy. Tree” refers to whether a phylogenetic tree is required as an input (if Yes), estimated alongside transmission (if Est.),
or not used (if No). “Seqs” refers to whether genetic sequences are used directly in the inference procedure. “Exp. Time” refers to whether
data concerning time of exposure to disease or length of admission time is used in the inference procedure. “Loca. data” refers to whether

location data is used in the inference procedure

Method features Data Used

Name/Author Ref Multi intro Multi Seq. In host Bneck > 1 Un Samp Phy Tree Seqs Exp Tim Loca. data

Outbreaker [18] Yes No No No Yes No Yes No No
TransPhylo [8] No Yes Yes No Yes Yes No No No
SCOTTI [7] Yes Yes Yes Yes Yes Est. Yes Yes No
Kenah et al. [21] No Yes Yes No No Yes No Yes No
Numinnen et al. [28] No Yes Lim. No No Est. Yes No No
Mollentze et al. [26] Yes No No No No Yes No Yes Yes
Morelli et al. [27] No No No No Yes No Yes Yes Yes
Soubeyrand [35] No No Yes Yes No Yes No Yes Yes
Hall et al. [15] No Yes Yes No Yes Est. Yes No Yes
phybreak [23] No Yes Yes No No Est. Yes No No
Trepar [36] No No Yes No Yes Yes No No No
bitrugs [38] Yes No Yes No Yes No Yes Yes No

and then Edmond’s algorithm is used to find the min-
imum directed spanning tree of this graph. It is there-
fore possible that such a consensus tree is different in
structure from every tree in the posterior, particularly
when the trees are quite varied. This limits the ability
to effectively summarise the posterior.

Here, we develop a metric on the space of transmis-
sion trees for a set of infected cases. It allows for un-
sampled individuals in transmission trees, and is also
applicable to other kinds of tree structures. We illus-
trate the metric using random transmission trees with
a simple structure, and find that the metric separates
groups of transmission trees in an intuitive and mean-
ingful way. We proceed to analyse posterior collec-
tions of transmission trees from a Bayesian inference
of transmission from genetic data, and we illustrate
how the metric allows us to understand posterior uncer-
tainty and sensitivity to priors. Additionally, the metric
provides a straightforward way to identify a represen-
tative median tree from a collection of trees. Such a
median tree has advantages over consensus tree con-
structions because it is one of the trees from the origi-
nal collection.

2. THE METRIC

We begin by defining what we mean by a transmis-
sion tree. We consider the case in which each individ-
ual is infected at most once. For many pathogens, it is
possible that cases are infected sequentially or even co-
infected with different variants, but if this is observed
in a set of data, we would denote the multiple infec-
tions as distinct, each with a unique infector. Note that
we allow for the presence of unsampled cases among
the nodes, that is, individuals who were not known to
the health care system during the data-gathering pro-
cess, but whose presence in the transmission has been
inferred.

DEFINITION 1. A transmission tree T = (N,E) is
a directed graph with nodes N and edges E, in which
each node corresponds to an infected individual and
edges correspond to transmission events. The set of
nodes N = S ∪ U , where S is the set of sampled cases
and U is the (possibly empty) set of unsampled cases.
A directed edge from node ni to nj implies that ni in-
fected nj . We say that ni is the “infector” and nj is
the “infectee”. Each node has at most one infector. We
require the graph to comprise a single connected com-
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ponent. In addition, a transmission tree has a unique
node, the source, with in-degree 0 (no infector in N ).

Since we do not allow for an infectee to have more
than one infector, and we have a unique source with
no infector in N , and the graph is connected, the graph
(N,E) has no cycles; it is a tree.

DEFINITION 2. For any node ni ∈ N , there is a
unique path pi in T from the source case along directed
edges to ni .

The depth of node ni is the number of edges on the
path pi ; the source case has depth zero.

The most recent common infector (MRCI) of two
nodes ni and nj is the node with the greatest depth
which lies on both paths pi and pj . Note that if ni in-
fected nj , or more generally if ni lies on the path pj ,
then their MRCI is ni . For convenience, the MRCI of
ni and ni is also defined to be ni .

The descendants of ni are the nodes that can be
reached following directed paths originating at ni .

The requirement that there is a unique source node
reflects the fact that we are not modelling multiple
distinct introductions of a pathogen into a commu-
nity. Rather, the source node is infected somewhere, by
someone, outside the study population and introduces
the infection into the study population via the transmis-
sion tree.

DEFINITION 3. For a transmission tree T , we de-
fine the matrix v(T ) with components vi,j = the depth
of the MRCI of ni and nj in T .

We illustrate a simple transmission tree and give
some examples of v in Figure 1.

To compare different transmission trees T1 and T2
for the same infection, we propose using the Euclidean
distance between v(T1) and v(T2) (each written for
convenience as a vector), as was done in [4, 22]. How-
ever, although the trees will contain the same set of

FIG. 1. A simple transmission tree. Here, vD,E = 1 because the
MRCI of cases D and E is case B, which is 1 step from the source
case A. vD,B = 1 also, because the MRCA of D and B is B. But
vD,F = vE,F = vE,G = 0, and so on for pairs of cases whose
MRCI is the source case, A.

sampled cases, S = {s1, s2, . . . , s|S|}, the number of in-
ferred unsampled cases |U |, and hence |N |, may differ
between trees. Therefore, to ensure that we are compar-
ing vectors of the same length, we restrict our attention
to the vector of sampled cases,

v|S(T ) = (vs1,s1, vs1,s2, . . . , vs|S|,s|S|).

In practice, we will often wish to compare trees
with respect to transmission paths leading to sampled
cases, ignoring sets of “trailing” unsampled cases with
no sampled descendants. Indeed, many tree inference
methods only include unsampled cases to make sense
of historic infectors of sampled cases. The tree vector
of sampled cases respects this.

LEMMA 1. Let T = (N,E) be a transmission tree.
Let T ∗ = (N∗,E∗) be a copy of T , except that any un-
sampled cases in T without infectees have been pruned
(i.e., the unsampled case node and its only incident
edge removed), and this process repeated until each
unsampled case has at least one sampled case some-
where among its descendants. Then v|S(T ) = v|S(T ∗).

PROOF. The vector v|S records the depths of sam-
pled cases (the vsi ,si entries, where si ∈ S) and the
depths of MRCIs of pairs of sampled cases. Recall that
by “depth” we mean the number of edges (equivalently,
the number of nodes minus one) on the unique path
from the source case to the node in question. Consider
an unsampled case u with no sampled case descen-
dants. Since its removal would not shorten any path
between the source case and a sampled node, or even
between the source case and the MRCI of any pair of
sampled nodes, its existence and position are entirely
masked from v|S . Thus each entry of v|S(T ) is un-
changed by the pruning of unsampled cases without
sampled descendants, and so v|S(T ) = v|S(T ∗). �

Since we are interested in comparing transmission
trees, it is important to establish when we consider two
trees to be equivalent. In particular, since the labels of
the sampled cases are key to understanding the trans-
mission process, it is important to distinguish between
a tree where “case 1 infected case 2” and a tree where
“case 2 infected case 1”. However, since any number-
ing of unsampled cases is arbitrary, the labels of un-
sampled cases may be safely ignored. We will use the
following definition.

DEFINITION 4. Consider two transmission trees
T1 = (N1 = S ∪ U1,E1) and T2 = (N2 = S ∪ U2,E2),
where the set of sampled cases S is the same in each
tree. Let T ∗

1 = (N∗
1 = S ∪ U∗

1 ,E∗
1) and T ∗

2 = (N∗
2 =
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(a) T1 (b) T2

FIG. 2. T1 and T2 are S-isomorphic because T2 will be the same as T1 (up to the relabelling of unsampled cases) after pruning the unsam-
pled cases with no sampled descendants. Explicitly, we are using the bijection φ : N∗

1 → N∗
2 where φ(si) = si for si ∈ S = {1,2,3,4,5} and

φ(ua) = u2, φ(ub) = u1.

S ∪ U∗
2 ,E∗

2) be copies of T1 and T2, respectively, but
pruned so that every unsampled case has at least one
sampled case among its descendants, as in Lemma 1.

We say that T1 and T2 are S-isomorphic if there is an
S-label-preserving isomorphism from T ∗

1 to T ∗
2 , that

is, a bijective function φ : N∗
1 → N∗

2 such that φ is the
identity on S:

φ(si) = si for all si ∈ S

and unpruned edges are preserved:

(ni, nj ) ∈ E∗
1 ⇔ (

φ(ni), φ(nj )
) ∈ E∗

2 .

As an example, the two trees in Figure 2 are S-
isomorphic: arbitrary differences in labelling of un-
sampled cases u1, u2, . . . will not affect our measure
of tree difference, nor will the presence of unsampled
cases with no sampled descendants.

THEOREM 1. Let S be a set of sampled cases and
T a set of transmission trees, each of whose set of
nodes contains the set S. Then for any T1, T2 ∈ T , the
Euclidean distance between tree vectors,

d(T1, T2) = ∥∥v|S(T1) − v|S(T2)
∥∥,

is a metric on T up to S-isomorphism.

PROOF. The Euclidean distance between vectors is
symmetric, nonnegative and satisfies the triangle in-
equality. To prove that d is a metric, we need to show
that d(T1, T2) = 0 if and only if T1 and T2 are S-
isomorphic.

Since the vectors are well defined and are not con-
ditional on the labelling of unsampled cases, and by
Lemma 1, we know that when T1 and T2 are S-
isomorphic then v|S(T1) = v|S(T2). It remains to show

that v|S(T1) = v|S(T2) implies that T1 and T2 are S-
isomorphic. The proof follows fairly naturally from re-
sults in [4] and [22]. Here, we provide a proof which
also supplies some intuition for an algorithm for recon-
structing the transmission tree T from the tree vector
v|S(T ).

Let T1 = (N1,E1), T2 = (N2,E2) ∈ T be trees on
a set of sampled cases S, and suppose that v|S(T1) =
v|S(T2). First, we consider the simpler case where
there are no unsampled nodes in either tree, so N1 =
N2 = S. We consider the identity bijection φ : N1 →
N2 with φ(ni) = ni for all i ∈ S = N1 = N2. To show
that T1 and T2 are S-isomorphic, we must show that φ

preserves all edges so that E1 = E2.
The unique node n0 with v0,0(T1) = 0 is the source

case in T1, and for each i ∈ N1, the value vi,i(T1)

gives the depth of node ni in T1; similarly for T2. Thus
v|S(T1) = v|S(T2) implies that T1 and T2 have the same
source case and that each sampled node is found at the
same depth in both trees. We begin to see how the vec-
tor v|S(T1) can be used to construct T1: for each depth
δ, we can make a list of the nodes at that depth [nodes
nj which satisfy vj,j (T1) = δ]. In this way, we can start
to draw our transmission tree as in Figure 3(b), where
nodes are at the correct depths but directed edges are
yet to be placed.

Now for every ni, nj ∈ N1, there is an edge (ni,

nj ) ∈ E1 precisely when ni and nj are at consecu-
tive depths (without loss of generality, say ni is at
depth δ and nj is at depth δ + 1) and vi,j (T1) = δ,
since this means that ni is the infector of nj . Since
vS(T1) = vS(T2), we have that vi,j (T1) = vi,j (T2) for
all ni, nj ∈ S, and so (ni, nj ) ∈ E1 if and only if
(φ(ni), φ(nj )) = (ni, nj ) ∈ E2. Thus E1 = E2 and T1
and T2 are S-isomorphic.
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(a) (b) (c)

FIG. 3. For ease of visual notation, we have written the vector v here as a matrix M , where Mi,j = vi,j , and omitted the upper triangle
of the matrix because M is symmetric. The vi,i entries, shown in (a) as the black, diagonal entries of M , determine the depths of the nodes
in the transmission tree. We place each node at its appropriate depth (b). Transmissions (directed edges) will be placed to point downwards,
from one depth to the next. It then remains to check the (red) entries of M corresponding to pairs of nodes at consecutive depths, in order to
place the edges in the tree. To draw the transmission tree as a planar graph, it may be desirable to rearrange the order of the nodes at each
depth; here, we have swapped the order of nodes 3 and 4. Blue entries of M are not required for this tree reconstruction.

Now suppose that S is a strict subset of N1,N2 (there
are some unsampled cases in each tree). By Lemma 1,
we know that if there are any unsampled cases in T1
and/or T2 without sampled descendants, then these will
not affect the vectors v|S(T1), v|S(T2). It remains to
show that there is a bijective function φ : N∗

1 → N∗
2

such that φ is the identity on S and (ni, nj ) ∈ E∗
1 if and

only if φ(ni, nj ) ∈ E∗
2 .

If the source case in T1 is an unsampled case, then
vsi ,si (T1) > 0 for all si ∈ S. Since v|S(T1) = v|S(T2),
we also have vsi ,si (T2) > 0 for all si ∈ S, and so the
source case is unsampled in T2 also. From the first part
of the proof, we know that any subtree (a connected
subset of nodes) of sampled cases Ŝ ⊆ S which in-
cludes the source case must give rise to a unique vector
v|ŝ, so that all node depths and edges are determined.
By extension, any subtree T |

Ŝ
of sampled cases Ŝ

whose minimum depth in T is δ must also be uniquely
determined by v|ŝ , since v|ŝ (T ) = v|ŝ (T |

Ŝ
)+δ. There-

fore, we know that the identity map φ : S → S pre-
serves all edges within subtrees of sampled cases: for
all si, sj ∈ S, (si, sj ) ∈ E∗

1 if and only if (si, sj ) ∈ E∗
2 .

It remains to show that for any path in T1 from the
source to a sampled case, an S-isomorphic path exists
in T2 (a path can be considered as a tree so we are con-
tinuing to use the same definition of S-isomorphism).
By definition, the path pi from the source to a sampled
node ni ∈ S at depth δ contains a single node at each
depth 1,2, . . . , δ, and recall that each sampled node has
the same depth in T1 and T2.

Fix a sampled node ni at depth δ ≥ 0 and con-
sider the path to it from the source case in each tree,
pi(T1) and pi(T2) in T1 and T2, respectively. Con-
sider a depth x ∈ {0, . . . , δ} and find the node na at
depth x on pi(T1). If na is a sampled node, then

va,a(T1) = x = va,a(T2) and va,i(T1) = x = va,i(T2),
so the same sampled node na also appears at depth
x on path pi(T2). Now suppose that na is an unsam-
pled node in T1, that is, na ∈ U∗

1 . Since there is ex-
actly one node at depth x in T1 which has ni among
its descendants, and since this node na is unsampled,
then there can be no sampled node nb ∈ S such that
both vb,i(T1) = x and vb,b(T1) = x. Since the vectors
are equal, there can be no node nc ∈ S such that both
vc,i(T2) = x and vc,c(T2) = x, and so the node at depth
x on path pi(T2) is unsampled also.

Thus each edge (na, nb) on path pi(T1) is in E∗
1

and has a corresponding edge (φ(na),φ(nb)) on path
pi(T2) in E∗

2 , where na ∈ S if and only if φ(na) = na ∈
S, and na ∈ U∗

1 if and only if na ∈ U∗
2 ; similarly for nb.

Since this is true for every path from the source to a
sampled node, we have shown that v|S(T1) = v|S(T2)

implies that all such paths are S-isomorphic in T1 and
T2, hence T1 and T2 are S-isomorphic. �

Note that this proof illustrates that many of the en-
tries of v are redundant for the reconstruction of the
tree, particularly when all cases are sampled, in which
case we can ignore any entries va,b where na and nb are
not at consecutive depths. In Figure 3, we only need the
diagonal and red entries of M to construct the tree. In
fact, since we know that the graph is a tree, wherever
there are two red entries in a row, only one red entry is
strictly necessary in this example for the placement of
edges. Nevertheless, further (blue) entries are needed
to understand the relationships across multiple depths
when there are unsampled cases, and these “extra” en-
tries also add weight in the comparison of transmission
trees and may be useful if this metric was extended to
include edge weights.
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The existence of a metric on a set of objects enables
a variety of further analyses to be performed. These in-
clude: visualising the pairwise distances between the
objects using projections such as multi-dimensional
scaling (MDS) [6] and cluster analysis, as proposed in
the related literature of phylogenetic tree comparison
[1, 16, 17, 5, 2, 22]. Although the metric we have pro-
posed is not convex, barycentric methods can be used
to find a representative “central” tree from a set, for ex-
ample, we can find the geometric median tree as pro-
posed in [22].

Such methods may be used to compare trees: from
different input data, taking into account various com-
binations of metadata; from different inference pro-
cesses, with variations in their assumptions and set-
tings; and within the same inference process, for exam-
ple, to assess convergence within a Bayesian posterior.
Projecting tree–tree distances into two or three dimen-
sions, assessing clustering and finding representative
tree(s) can be important for assessing and summarising
the performance of inference processes. Additionally,
each tree can be compared to a fixed reference tree,
for example, to assess the success of an inference pro-
cess in reconstructing the “true” tree from a simulation,
or to estimate the effective sample size of discrete tree
structures as proposed in [25].

3. RESULTS

3.1 Toy Examples

The metric which we have proposed here detects any
differences between trees. In particular, it highlights
differences in the “shape” of the transmission tree (star-
like versus single transmission chain, etc.), correspond-
ing to different transmission dynamics. The shape and
depth of the tree is largely determined by the number
of infectees per infector. The measure also highlights
differences in the attribution of the source case (and in
general, differences in historic transmissions are given
more emphasis than recent transmission differences).
The distance between two trees also depends on the
number and relative positions of unsampled cases.

We tested how well the metric resolves some of
these differences using small examples. For each of the
following scenarios, we generated 1000 transmission
trees at random from the set of trees with the given
constraints. We then applied the metric to find the pair-
wise distances between them, and projected the dis-
tances into a two-dimensional plot using MDS. We use
colours and shapes in the plots to highlight key differ-
ences between the trees, and to see where these colours

do or do not correspond to position in the MDS. For
each scenario, we picked the number of infected cases
to be small enough so that it was easy to plot and ex-
amine the individual trees by eye, and for it to be pos-
sible to take a reasonably large sample from the set of
all transmission trees of that size, but large enough for
there to be a variety of possible tree structures within
the given constraints.

3.1.1 Scenario 1. For the first scenario, we gener-
ated random transmission trees under the following
constraints: we had exactly eleven sampled cases and
no unsampled cases. Each infector was constrained
to infect exactly two cases (a binary tree), and the
source case was fixed as case 1. Under these con-
straints, there are precisely six possible tree “shapes”,
each admitting a variety of possible transmission trees
through the permutation of the remaining ten case la-
bels. The key variation in the MDS plot is associated
with the height/shape of the tree: in Figure 4(b), we
have coloured each point according to the mean value
of its tree vector v, that is, the mean of the MRCI
depths in the tree. Some example trees are also shown:
Figure 4(a) is a tree with the maximum possible depth
(mean of v ≈ 1.4) and Figure 4(c) is a tree with the
minimum possible depth (mean of v ≈ 0.6), given the
above constraints. The metric distinguishes trees com-
posed of one long transmission chain in which each
infection gives rise to only one onward-infecting case
(and one case who does not infect anyone else), as
opposed to more heterogeneous transmission trees in
which some individuals cause two onward infectious
cases.

3.1.2 Scenario 2. Our second scenario is similar to
the first (eleven sampled cases, no unsampled cases,
each infector infects exactly two cases), but now we fix
the source case to be case 1 in half the trees, and case
2 in the other half. The resulting MDS plot is shown
in Figure 5. The symmetry in the plot with respect to
MDS axis 1 (which corresponds to the eigenvector with
largest eigenvalue in the dimensionality reduction) il-
lustrates symmetry in the tree distances with respect
to the choice of source case (indicated by the shape of
each point). The shape of the tree, as measured by the
mean of v, varies strongly with the second MDS axis.
Overall, Figure 5 illustrates that the metric is sensitive
to both the shape and the labels in the transmission tree.

3.1.3 Scenario 3. We now reduce the constraint on
the number of infectees. For our third scenario, each
infector infects n cases, where n is picked uniformly at



ESTIMATING TRANSMISSION 77

(a) (b) (c)

FIG. 4. Scenario 1: eleven sampled cases, no unsampled cases, each infector infects exactly two cases, source case fixed as case 1.

random from {1,2,3}, per tree. Each tree has thirteen
sampled cases and no unsampled cases. The source
case is picked uniformly at random from {1, . . . ,6} (for
ease of identification by colour in the MDS plots) and
the remaining case labels are determined by a random
permutation. The overwhelming grouping on the first
two axes [Figure 6(a)] is by the number of infectees
per infector. In particular, the transmission trees where
each infector has one infectee, which are simple chains,
are strongly separated from the other trees and are more
widely spread in the plot. This is because the large
number of possible permutations of their labels lead
to greater differences in transmission histories than in
the shorter, more balanced trees where each infector
causes two or three new infections. There is still some

FIG. 5. Scenario 2: similar to Scenario 1, except half have the
source case fixed as case 1, the other half have the source case
fixed as case 2. We note that the source cases are fixed in the trees
(they are necessary to compute the distances) and are not revealed
by the metric.

noticeable separation by source case, which becomes
much more apparent in a plot of the second and third
axes [Figure 6(b)]. This underlines the findings of Sce-
narios 1 and 2 by showing that the metric distinguishes
trees by transmission dynamics and source case attri-
bution, but with rather more emphasis on the former
when everything else is fixed.

3.1.4 Scenario 4. In our next scenario, we anal-
yse the impact of including unsampled cases in our
transmission tree. We consider trees with eight sam-
pled cases and a further c unsampled cases, where c

is picked uniformly at random from {0, . . . ,8}. Each
infector infects n cases, where n is picked uniformly
at random from {2, . . . ,6}, until all cases have been
infected (note that this means that not every infector
will necessarily infect exactly n cases). Figure 7 shows
how various characteristics of the transmission trees
are represented in the MDS plot. The first two axes
group the trees by features which are correlated with
tree shape/transmission dynamics: the mean number
of infectees per infector [Figure 7(a)] and the num-
ber of unsampled cases in the tree [Figure 7(b)]. These
features are also strongly correlated with the mean of
the tree vector v|S (which captures the depths of sam-
pled MRCIs). As in Scenario 3, there is some grouping
by source case [Figure 7(c)], particularly by sampled
source case, especially in the second and third axes
[Figure 7(d)], where we have plotted the trees with un-
sampled source cases with low point opacity.

3.1.5 Scenario 5. We compared trees with “super-
spreaders” to those without. A “super-spreader” is an
individual who infects a high number of secondary
cases compared to other individuals. We simulate 300
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(a) MDS plot of axes 1 and 2 (b) MDS plot of axes 2 and 3

FIG. 6. Scenario 3: thirteen sampled cases, no unsampled cases, each infector infects n cases, where n is picked uniformly at random from
{1,2,3}, per tree. Source case is picked uniformly at random from {1, . . . ,6}.

transmission trees with half of them containing a super-
spreader. For each tree, there are 20 (sampled) cases
from which a super-spreader was randomly chosen and
can infect up to 10 cases, with the probability that it in-
fects exactly 10 cases being 0.9; and the source case
was fixed to be case 1. We find that the metric does
not separate transmission trees with super-spreaders
from those without, though super-spreader trees have
a wider spread of tree–tree distances (and so visually
occupy a larger region of the MDS space). Figure 8
illustrates the results. The lack of separation indicates
that similar v can be obtained from trees with widely
varying maximum numbers of secondary infections.

One observation that might explain the failure of the
metric to distinguish a transmission tree containing a
super-spreader (sp-tree) from one that does not (non-
sp-tree) is that the tree vector of an sp-tree is closer to
the line with slope one (in some space R

d ) than that of
non-sp-tree. In fact, if the super-spreader in the sp-tree
infects n cases, there would be at least

(n
2

)
identical en-

tries in the tree vector, being the depth of the common
MRCI; and so the distance to the slope-one line would
get smaller. Note that this does not necessarily imply
that an sp-tree and a non-sp-tree are far apart from each
other in the sense of the defined metric.

The wider tree–tree distance in the case of sp-trees
can be explained by noting that infectees of a super-
spreader occurring near the source (root) of the tree
have much smaller depth of common MRCI than if the
super-spreader were to occur far from the source.

3.2 Tuberculosis Outbreak

We used the R package TransPhylo [8] to perform
MCMC inference to reconstruct an outbreak of tuber-
culosis (TB) reported by Roetzer et al. [32]. The out-
break lasted from 1997 to 2010 during which epidemo-
logical data were collected such as information con-
cerning previous exposure to known cases, residence
status, sex and age. TransPhylo is a Bayesian infer-
ence method to infer transmission trees using genomic
data. TransPhylo’s starting point is a timed phyloge-
netic tree, in which tips correspond to sampled cases
and internal nodes correspond to inferred common an-
cestors; edge lengths are in units of time. The starting
tree was inferred using the BEAST [10] software as de-
scribed in [8]. This tree is held fixed, and TransPhylo
proceeds by overlaying transmission events on it, and
computing the likelihood of the overall transmission
process at each iteration.

Here, we use the metric we have presented to com-
pare inferred transmission trees under different priors,
and to explore convergence of the MCMC. The time
between an individual becoming infected and infecting
others is a major source of uncertainty in TB, as it has
a long and variable latent period; this is in contrast to
acute infections such as influenza in which the genera-
tion time is short and not highly variable (typically un-
der 1–2 weeks). In any public health investigation, it is
difficult to determine how effectively and rapidly cases
are identified. Accordingly, it is important to know how
prior assumptions about these distributions affect out-
break reconstructions. The metric allows us to quantify
and visualise this.
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(a) Colour: mean number of infectees per infector (b) Colour: number of unsampled cases

(c) Colour: ID of source case (or u for an unsampled
source)

(d) Axes 2 and 3. Colour: ID of source case (or u for
an unsampled source, faded)

FIG. 7. MDS plots of tree–tree distances for trees from Scenario 4: eight sampled cases, up to eight further unsampled cases, each infector
infects two to six cases. Colour is used to demonstrate how the trees are grouped according to various features. Axes 1 and 2 are plotted
except where otherwise stated.

We ran 100,000 MCMC iterations with five differ-
ent choices for the priors for the sampling and gener-
ation times. Some individuals were sampled for rea-
sons other than their symptoms and as such the prior
sampling distribution was chosen to be a gamma dis-
tribution [8]. Also a gamma distribution was used for
the prior generation time distribution in order to re-
flect the variable disease progression of TB. We sam-
pled 200 random trees from the last 10,000 iterations
of each of the five MCMC runs. We applied the metric
to these trees and projected the distances into a two-
dimensional plot using MDS (Figure 9). In Figure 9(a),
we show the distances between the last 1000 trees from
one of the MCMC runs, each tree colored by its it-
eration number. This reflects how the MCMC moves

through the tree space: it samples several times from
an area and then hops to another, qualitatively illustrat-
ing good mixing.

Figure 9 illustrates that there are distinct differences
between the inferred trees depending on the priors. Fig-
ures 9(b) and 9(c) show 1000 trees, 200 from each of
the five MCMC runs, on axes 1,2 and 2,3, respec-
tively. Colors correspond to mean generation times and
shape corresponds to mean sampling times. In Fig-
ure 9(b), there are two visually separated clusters of
trees. It is not clear why the mean prior generation time
of 4.3 years and sampling prior of 2.8 years should
produce markedly different trees, as these are not ex-
tremal choices of the prior, but in practice it is useful
to be able to visualise how unimodal a posterior (or set
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(a) A super-spreader tree (b) MDS plot (c) A nonsuper-
spreader tree

FIG. 8. Transmission trees from a process with and without super-spreaders. In the MDS plot, trees with and without super-spreaders are
colored in blue and red, respectively. The MDS plot suggests that the metric cannot separate the two groups, although the super-spreader
group has a wider spread.

of trees from multiple posteriors under different pri-
ors) is. For the two obvious clusters (blue, and every-
thing else, in the middle panel of Figure 9), we obtain
both a median tree using our metric and a consensus
tree using TransPhylo’s function consTTree which im-
plements Edmond’s algorithm. We refer to the smaller
blue cluster as cluster 1 and the other as cluster 2.
The points MT 1, MT 2 correspond to median trees for
clusters 1 and 2 while CT 1 and CT 2 correspond to
(Edmond’s) consensus trees of these clusters. CT 1 is
visually separated from the rest of its cluster in the
MDS plot, whereas the median trees sit centrally in
their clusters. Consistent with this, the mean distances
from MT1 and CT1 to trees in cluster 1 are 98 and
306 units, respectively. Cluster 2 is larger and more
dispersed, and the consensus tree is more central, but
the mean distances between MT2 and CT2 and clus-
ter 2’s trees are 370 versus 474 units. In our metric,
the median trees are closer to the clusters they aim to
summarise than the trees derived from Edmond’s algo-
rithm. The individual transmission trees are illustrated
in Figure 10.

Trees from the two main clusters have similar depths,
and all identify case 1 as the source. Trees from within
each cluster have strong similarity in the first few in-
fections after the source case, but there are distinct dif-
ferences between the clusters, with many individuals
placed very differently. For example, note the positions
of patients 83 and 85, who appear early in the trans-
mission process in cluster 1 but at the end, with no in-
fectees, in cluster 2. Overall, trees from cluster 2 have

more unsampled cases (average 88) than cluster 1 (av-
erage 33). This is reflected in the median and consen-
sus trees, with 38 and 60 unsampled cases in MT1 and
CT1 versus 145 and 111 in MT2 and CT2, respectively.
This is likely a result of the prior assumptions: shorter
sampling and generation times (more in cluster 2) use
higher numbers of unsampled cases to fill in transmis-
sion events along long branches of the fixed phyloge-
netic tree that is provided as input.

We visualised the median and consensus trees us-
ing colour to indicate patients’ TB smear status. The
smear status refers to the result of a sputum smear mi-
croscopy test, which detects TB bacilli in patient spu-
tum samples. Smear-positive individuals are believed
to transmit TB more than smear-negative cases due to
the higher numbers of bacilli present in the sputum
[34], but the smear test itself has limited sensitivity (as
low as 50%) [33]. In our analysis, smear-positive in-
dividuals transmit more in trees MT1 and CT1 than in
MT2 and CT2, largely due to the fact that MT2 and
CT2 have a much higher fraction of transmission by
unsampled cases.

The metric can be used to compare analyses of the
same dataset with different inference methods, which
have different underlying assumptions, constraints and
priors. We compared four methods, analysing the tu-
berculosis outbreak data with each (Figure 11). Beast-
lier and phybreak seem closest in the visualisation;
both simultaneously estimate the phylogenetic and
transmission trees and do not allow unsampled cases.
SCOTTI’s approach requires the exposure times for all
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(a) Colour: iteration (b) Axes 1 and 2; Colour: mean gen. time; Shape:
mean samp. time

(c) Axes 2 and 3; Colour: mean gen. time; Shape:
mean samp. time

FIG. 9. MDS plots of tree–tree distances for posterior transmission trees from the Hamburg TB outbreak [32]. (a) Colour indicates iteration
number in the MCMC chain. (b) Colour indicates mean prior generation time, shape indicates mean prior sampling time and the median
trees of the two groups are labelled MT1 and MT2.

the cases (we do not know these so for the purposes
of demonstration, we simulated them), and the unsam-
pled state in SCOTTI is more appropriate for an en-
vironmental pathogen than for an unsampled human
host. SCOTTI is based on the structured coalescent,
with constant rates of migration of lineages among
demes (here, hosts). SCOTTI is therefore quite unlike
the other approaches. Finally, TransPhylo uses a single
input timed phylogenetic tree, and allows for unsam-

pled cases, which likely accounts for its distance to the
trees estimated by phybreak and Beastlier.

The data behind Figure 11 are based on model con-
figurations which were kept as consistent as their dif-
ferences allow. For example, generation time priors are
Gamma distributed with identical parameters for the
TransPhylo, Beastlier and phybreak models, whereas
for SCOTTI these are pre-generated (we used a sta-
tistical model of the time between infection and sam-
pling and the known sampling dates; this was the same
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FIG. 10. Median and consensus trees from each of the two clusters, coloured according to the smear status of each sampled patient.

gamma distributions used in TransPhylo) and passed in
as fixed periods. Similarly, sample time priors can only
be specified for TransPhylo and phybreak. 100,000
simulations were run for the SCOTTI and TransPhylo
data, with 20,000 for Beastlier and phybreak.

4. DISCUSSION

We have introduced a metric, in the sense of a true
distance function, on the set of transmission trees with
labelled sampled cases along with unsampled cases (up
to our notion of isomorphism). In the context of infer-
ring transmission trees, this metric can aid in assess-

ing convergence, posterior concordance and sensitivity
to priors, and in comparing inference methods to each
other. It emphasises the source case and the extent of
shared transmission events in two trees. We applied the
metric to random trees from simple simulated scenar-
ios and found that it can separate trees according to
their overall shape, the numbers of infectees per infec-
tor, and according to which case is the source. It allows
for trees with unsampled cases, an advantage because
health authorities rarely know about every case in an
outbreak of an infectious disease.

The metric is sensitive to the source case, and as
such, it carries the limitation that trees with different
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FIG. 11. MDS plot of transmission trees estimated by
TransPhylo, SCOTTI, phybreak and Beastlier.

source cases but otherwise similar transmission events
may appear a higher distance from each other than in-
tuition would suggest. In addition, while unsampled
cases are possible, the metric is only a metric up to
pruning of unsampled cases with no descendants, and
up to relabelling of unsampled cases. The way we treat
unsampled cases could result in distances that do not
always reflect intuition. For example, if one tree has
long chains of unsampled cases but otherwise similar
connectivity (i.e., A infects B, versus A infects B via
a long chain of intermediate unsampled cases, and this
occurs for many pairs of individuals), our metric will
show a relatively large distance. If this is not desired in
a specific application, the effect can be reduced by col-
lapsing chains of unsampled cases before computing
distances.

The metric as it stands also does not take the timing
of transmission events into account, equating for exam-
ple a tree in which A infects B and then infects C two
weeks later, with one in which A infects C and then in-
fects B a year later (as both have A infecting both B and
C). It would be straightforward, however, to modify
the metric in either of two ways: (1) convert the trans-
mission tree to a genealogical, binary, tree—capturing
pathogen lineages that branch at transmission events—
and then use a metric on those binary trees [31, 3, 22],
or (2) incorporate timing information in the lengths of
branches in the framework we have presented here. In
(2), we would construct a vector wS(T ) whose entries
were the time elapsed between the infection of the MR-
CIs, rather than the depths of the MRCIs, and then the
time-sensitive metric could be defined as

d(T1, T2) = ∥∥(
εv|S(T1) + (1 − ε)w|S(T1)

)

− (
εv|S(T2) + (1 − ε)w|S(T2)

)∥∥.

With ε > 0, this would still be a metric on T up to the
same isomorphism.

The metric could be used in other applications analo-
gous to those for phylogenetic trees. For example, Nye
et al. created parsimonious meta-trees to capture the
relationships among a set of phylogenetic trees, scor-
ing each meta-tree with the Robinson–Foulds metric
[29]. The same approach could be taken here to cre-
ate a meta-tree of transmission trees. The metric could
also be used to aid in computing effective sample sizes
for posterior collections of transmission trees. Effec-
tive sample sizes (ESS) are routinely used in phyloge-
netic inference, and should be adopted for inference of
transmission trees as well. Recently, Lanfear et al. [25]
outlined approaches to use distances been phylogenetic
tree topologies to compare MCMC runs and assess
convergence and autocorrelation—they used traces of
distances between trees along the MCMC chains and a
single “focal tree”, and distances between trees in the
chain sampled at different sampling intervals (“jump
distances”). Lanfear et al. computed effective sample
sizes by applying standard techniques to distances be-
tween posterior trees. The same approaches could be
used to estimate effective sample sizes for MCMC
chains inferring transmission trees, using the metric we
have presented here.

5. CONCLUDING REMARKS

Inferring transmission events from epidemiological,
clinical and now genetic data is a challenging task, and
an important one as understanding transmission is es-
sential for designing the best approaches to control in-
fections. Genomic data are noisy, and the underlying
processes generating the true variation are stochastic.
However, recent advances in sequencing technologies
have led to widespread interest in using pathogen se-
quences to inform us about who infected whom. There
are now many Bayesian methods available for this in-
ference task, each developed with specific goals and
features in mind, and each tested on the authors’ own
data and simulation scenario (with [23] as one excep-
tion that includes tests on other authors’ simulations).

Understanding convergence, the effects of priors and
the structure of the posterior collections of transmis-
sion trees is not trivial. As this field matures, com-
paring and benchmarking the performance of different
methods will require the ability to quantify how close
different approaches come to each other and to gold
standard trees that experts agree are the best match to
comprehensive data sources for an outbreak. We have
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developed a metric that can aid in these tasks, illus-
trated its performance and made it available to the com-
munity.

6. AVAILABILITY

The R functions required for the tree distances pre-
sented here are available in the treespace package
[19, 20]. A worked example for transmission trees is
available on the treespace CRAN page: https://
cran.r-project.org/web/packages/treespace/vignettes/
TransmissionTreesVignette.html.
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