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Summary 20 

How likely is it to become infected by SARS-CoV-2 after being exposed? Virtually 21 
everyone has wondered about this question during the COVID-19 pandemic. Contact 22 
tracing apps1,2 recorded measurements of proximity3 and duration between nearby 23 
smartphones. Contacts - individuals exposed to confirmed cases - were notified 24 
according to public health policies such as the 2-metre 15-minute guideline4,5, despite 25 
limited evidence supporting this threshold. Here we analysed 7 million contacts notified 26 
by the NHS COVID-19 app6,7 in England and Wales to infer how app measurements 27 
translated to actual transmissions. Empirical metrics and statistical modelling showed a 28 
strong relation between app-computed risk scores and actual transmission probability. 29 
Longer exposures at greater distances had similar risk to shorter exposures at closer 30 
distances. The probability of transmission confirmed by a reported positive test 31 
increased initially linearly with duration of exposure (1.1% per hour) and continued 32 
increasing over several days. While most exposures were short (median 0.7 hours, IQR 33 
0.4-1.6), transmissions typically resulted from exposures lasting one hour to several 34 
days (median 6 hours, IQR 1.4-28). Households accounted for about 6% of contacts but 35 
40% of transmissions. With sufficient preparation, privacy-preserving yet precise 36 
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analyses of risk that would inform public health measures, based on digital contact 37 
tracing, could be performed within weeks of a new pathogen emerging. 38 

Introduction 39 

 40 
Non-pharmaceutical measures such as social distancing, testing, contact tracing and 41 
quarantine are effective approaches to control the spread of epidemics, but they also 42 
entail significant social and economic costs8,9. It would be desirable to adjust these 43 
measures throughout an epidemic as epidemiological understanding increases or as the 44 
pathogen evolves. Optimising such interventions requires methods to quantify 45 
transmission risk factors. 46 
 47 
Despite the large amount of SARS-CoV-2 data collected globally, quantitative risk 48 
assessments at the level of individual exposures have been limited to a few large-scale 49 
manual contact tracing studies10,11. Another approach is provided by contact tracing 50 
apps on smartphones, which were implemented for COVID-19 in many countries. These 51 
apps digitised the process of contact tracing based on recording close-proximity events 52 
between smartphones1, performing quantitative risk assessment by measuring 53 
proximity3,12,13 and duration of exposure to cases, although their real-life accuracy has 54 
been questioned14–17. Contact tracing apps are useful for public health if they are able to 55 
estimate the risk of pathogen transmission and should be evaluated to improve their 56 
functionality and ensure public trust2,18. 57 
 58 
For contact tracing and more generally for distancing guidelines, public health 59 
authorities worldwide often used a binary classification of risk, e.g. whether or not 60 
individuals spent 15 minutes or more at a distance of 2 metres or less from a case4,5. 61 
Contact tracing apps were calibrated to approximately match these heuristic rules. In 62 
the UK, which experienced a large-scale epidemic and implemented a substantial test-63 
and-trace infrastructure, this advice led to more than 20 million notifications and 64 
quarantine requests from manual19 and digital20 contact tracing, with a peak of over 1.5 65 
million per week in July 2021. The socioeconomic costs could have been significantly 66 
mitigated by improved, fine-tuned guidelines for contact tracing and quarantine. Doing 67 
this would require two ingredients: (i) data and methods for quantitative assessment of 68 
how the probability of transmission varies with different factors, (ii) tools to measure 69 
those risk factors for contacts, to estimate their individual level of risk and respond 70 
appropriately. 71 
 72 
Digital contact tracing in England and Wales was implemented through the NHS 73 
COVID-19 App6 which was active on 13 to 18 million smartphones each day during 74 
20217. The app recorded measurements of the proximity and duration of exposure to an 75 
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index case using the privacy-preserving Exposure Notification framework21 with custom 76 
analysis of Bluetooth signal attenuation between smartphones to estimate proximity22. 77 
By relating this data to whether the exposed individual subsequently reported a positive 78 
test through the app, we provide the first analysis of how the probability of SARS-CoV-2 79 
transmission varied with app-recorded measurements. We analysed 7 million exposure 80 
notifications from April 2021 to February 2022 comprising 23 million hours of cumulative 81 
exposure and 240,000 positive tests reported after notification. We demonstrate that the 82 
NHS COVID-19 app accurately translated proximity and duration of exposure into a 83 
meaningful epidemiological risk score and we quantify how these factors affected the 84 
actual probability of transmission.  85 

Results 86 

We use the term case to mean an individual whose infection was confirmed by testing, 87 
index case to mean a case who triggered a contact tracing process, and contact to 88 
mean an individual identified as having had some level of exposure to an index case 89 
(including, in general, individuals whose level of exposure is evaluated as being below 90 
some risk threshold). 91 
 92 
The NHS COVID-19 app assessed the transmission risk for a contact by partitioning the 93 
full exposure event into a set of non-overlapping ‘exposure windows’, each lasting at 94 
most 30 minutes. For each window, the app calculated a risk score23,24: 95 
Risk score = proximity score × duration within the 30-minute window × infectiousness 96 
score 97 
The proximity score was constant below 1 metre, and decreased as the inverse square 98 
of the distance if greater than 1 metre. A scaling of risk in proportion to duration follows 99 
from microbial risk assessment expectations. Infectiousness was scored as either 100 
‘standard’, ‘high’ (2.5x), or zero depending on the timing of exposure relative to the 101 
index case symptom onset date (or positive test date when no symptom onset was 102 
recorded)23,25. For ease of interpretation, we normalised the risk score such that it 103 
equals 1 for an exposure at 2 metres’ distance from an index case with standard 104 
infectiousness for 15 minutes (i.e. the typical threshold for manual contact tracing), 105 
implying a maximum possible score of 20.  106 
 107 
Contacts were notified of a risky exposure if they had at least one exposure window with 108 
a risk score exceeding the threshold for notification, which was 1.11 with our 109 
normalisation (Extended Data Figure 1 shows the threshold in distance-duration space). 110 
When a contact was notified, their app sent anonymous exposure data to the central 111 
server. This data was sent in separate unlinked data ‘packets’, one for each exposure 112 
window that had a risk score over the notification threshold (about half of the contacts 113 
had more than one exposure window, see Extended Data Table 1). These packets 114 
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formed the basis for our analysis: we analysed only contacts who were notified and had 115 
at least one exposure above the risk threshold. We grouped windows likely to have 116 
come from the same contact as a recording of the whole exposure history between that 117 
contact and the associated index case (excluding windows below the notification 118 
threshold). If a given individual was notified multiple times during our study, each 119 
notification was treated as though it were of a separate contact due to the absence of 120 
unique identifiers.  121 
 122 
The data also indicated whether the contact reported a positive SARS-CoV-2 test 123 
through the app during an interval beginning with their notification and ending 14 days 124 
after the exposure. The fraction of contacts doing so defines the probability of reported 125 
infection. This is a proxy for the true probability of being infected, though it is 126 
significantly underestimated: an unknown but likely appreciable fraction of infected app 127 
users either did not seek a test, or did not report their positive result through the app, or 128 
reported it outside of the aforementioned interval. As a reference, the number of 129 
infections in adults in the same period in the UK was 2-3 times greater than the number 130 
of cases26. 131 
 132 
The linkage between exposure measurements and reported test positivity enables apps 133 
to be used for precision epidemiological estimation while preserving privacy. We 134 
analysed how contacts’ exposure data, recorded in separate 30-minute windows, can 135 
predict their probability of reporting a positive test following their exposure. The peak 136 
risk experienced by an individual can be summarised by the maximum risk score 137 
measured by the app among all of their 30-minute exposure windows. This summary 138 
metric is what the app actually used: contacts were notified only when it was above the 139 
threshold. We found an increasing probability of reported infection as the maximum risk 140 
score increased (Figure 1a). This pattern holds irrespective of season or epidemic wave 141 
(Figure 1b). This simple analysis demonstrates that the approach used by the app to 142 
calculate risk correlates with the actual risk of transmission. 143 
 144 
We defined two more summary metrics of risk measurements for each contact: the total 145 
duration of the exposure and the cumulative risk score, both aggregated over all 146 
exposure windows from the contact. Both of these metrics are more discriminatory than 147 
the maximum risk score. The probability of reported infection continues increasing as 148 
the duration and cumulative risk increase, even after several days of cumulative 149 
exposure (Figure 1). 150 
 151 
These results suggest that the instantaneous level of risk and the duration of exposure 152 
both affect the risk of transmission. We also expect a background level of risk from 153 
exposures not recorded or not reported by the app; we estimated this level by 154 
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statistically modelling it as proportional to the local risk of infection among app users at 155 
that time (see Methods). We therefore stratified contacts by two summary metrics of 156 
their app-recorded measurements simultaneously: the duration of their exposure and 157 
their mean risk score per unit time. For each stratum of contacts we calculated the 158 
fraction reporting a positive test through the app during the observation window, as 159 
previously, now also subtracting the estimated background risk; we refer to the resulting 160 
quantity as the probability of reported transmission. (This differs from the probability of 161 
reported infection in that the background has been subtracted, and thus we attribute 162 
transmission to the exposures measured by the app. Both of these probabilities are 163 
lower than the corresponding true probabilities due to incomplete reporting.) As 164 
expected, we found that the level of risk measured by the app and the duration of the 165 
exposure both contribute to the probability of reported transmission (Figure 2). Duration 166 
is the more important predictor. For short exposures the probability of reported 167 
transmission grows linearly with duration at a rate of 1.1% per hour, increasing 168 
sublinearly only after a few hours (Extended Data Figure 2). 169 
 170 
These results suggest that overall risk is determined by contributions from each 171 
separate exposure window, with greater contributions from riskier windows, in addition 172 
to the background risk. To disentangle these effects we used a statistical model for 173 
combined contributions to overall risk, estimating the separate contributions from each 174 
window and from the background. We refer to these separate contributions from each 175 
exposure window as the probability of reported transmission per exposure window. We 176 
found that the probability of reported transmission per exposure window was 177 
proportional to the app’s risk score for that window with remarkable accuracy, 178 
increasing by 0.3% per unit, providing validation that the app’s risk calculation is 179 
epidemiologically meaningful. Figure 3 shows this relationship for exposures lasting 180 
between 1 and 3 hours. The relationship is robust with respect to individual 181 
heterogeneities or underreporting of positive tests among contacts (Extended Data 182 
Figure 3). 183 
 184 
Heterogeneities in the context of an exposure are expected to have a large effect on 185 
transmission risk. While the context is not recorded by the app, date and geographical 186 
area may be correlated with context and other causal factors. As an example, the 187 
probability of transmission from low-risk exposures is higher over the weekend than on 188 
weekdays (Extended Data Figure 4), while the probability of transmission appears to be 189 
lower in London and other conurbations than in rural and urban areas (towns and 190 
cities), particularly at the lower end of the risk spectrum (Extended Data Figure 4). 191 
 192 
The impact of transmission control measures that target risk factors is determined by 193 
the distribution of these factors in the population, as well as how predictive they are of 194 
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risk. Figures 4a-c show the population distributions over contacts of the maximum and 195 
cumulative risk score and the total duration of the exposure. We show the distributions 196 
separately for (i) all contacts, and (ii) transmissions, i.e. only those contacts who 197 
reported a positive test result through the app in the observation window, for whom we 198 
attributed the infection to the recorded exposure. All distributions are strongly left-199 
skewed, with low risk scores and short durations most common among contacts, in 200 
agreement with previous observations in specific contexts such as university 201 
campuses27. Larger risk scores and longer durations are seen disproportionately more 202 
for transmissions than for all contacts, in keeping with our earlier results and 203 
mechanistic understanding of pathogen transmission risk. Across all contacts, most 204 
exposures are brief (median duration 40 minutes), yet most detected exposures that 205 
result in transmission last several hours (median duration 6 hours; 82% last more than 1 206 
hour) (Figure 4e), suggesting that contact tracing for SARS-CoV-2 would retain >80% of 207 
its effectiveness if applied with a threshold of one hour. Cumulative risk and duration 208 
show a bimodal distribution for transmissions; duration has a wide distribution (IQR 1.4-209 
28 hours) with a peak at around 1-2 hours of exposure and another peak at around 1-2 210 
full days of cumulative exposure, the latter most likely corresponding to household 211 
contacts.  212 
 213 
To clarify the contribution of different exposure patterns and contexts to SARS-CoV-2 214 
spread, we classified contacts into four categories intended to approximately reflect 215 
different contexts: contacts exposed for at least 8 hours in a day (household contacts), 216 
non-household contacts with recurring exposures on multiple days, contacts exposed 217 
during a single day (between 30 minutes and 8 hours), and fleeting contacts (less than 218 
30 minutes). Household and recurring contacts accounted for 6% and 14% of all app-219 
recorded contacts but were responsible for 41% and 24% of transmissions respectively 220 
(Figure 4d). The long duration of household exposures—33 hours on average—and 221 
their closer proximity explain their disproportionate role in transmissions (Extended Data 222 
Table 2). 223 
 224 
How effective are these app-measured predictors for binary risk classification for 225 
contacts? Panels e-f of Figure 4 show the sensitivity-specificity tradeoff among contacts 226 
from using different thresholds on duration. Extended Data Figure 5 shows the tradeoff 227 
for several predictors, including machine-learning classifiers using binned counts of risk 228 
scores and extra information such as background risk, date and region. There was a 229 
small improvement in classification by using duration or cumulative risk instead of 230 
maximum risk, and the only significant further gain came from the inclusion of 231 
background risk. In fact, duration and background risk alone were enough for a near-232 
optimal prediction with an area under the receiver operating characteristic curve of 0.73. 233 
 234 
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These quantitative risk measurements enable optimisation of a variety of management 235 
strategies based on simple and effective predictors such as duration of exposure to a 236 
case. As an example, we previously proposed milder ‘amber’ notifications as an 237 
alternative to quarantine for intermediate-risk contacts during the pandemic1,28 and 238 
these were implemented in some settings29. If amber notifications would be optimally 239 
assigned for intermediate durations of exposure, pursuing an optimised strategy of PCR 240 
testing following an amber notification could reduce the socioeconomic costs of an 241 
illustrative intervention by 30-50% for a similar epidemiological impact (Extended Data 242 
Figure 6), or increased its effectiveness by 30-50% for similar costs (Extended Data 243 
Figure 7). 244 

Discussion 245 

 246 
We performed the first large-scale study of how SARS-CoV-2 transmission probability 247 
varies with app-recorded risk measurements of the proximity and duration of exposures, 248 
analysing data from 7 million contacts notified by the NHS COVID-19 app in England 249 
and Wales. We found that the probability of infection strongly correlated with duration of 250 
exposure, as well as with the maximum and cumulative risk scores measured by the 251 
app. As a measure of proximity, the app’s risk score for individual exposure windows 252 
captured the relative probability of transmission with remarkable accuracy. Furthermore, 253 
the app-measured cumulative risk score was the best single predictor of probability of 254 
transmission among those tested, in agreement with expectations from microbial risk 255 
modelling (see Supplementary Methods Section 1.5). This provides highly encouraging 256 
validation for the risk modelling underlying the NHS COVID-19 App23,30 and for future 257 
development of similar tools. 258 
 259 
Our results have immediate implications for contact tracing. We found that the 260 
cumulative duration of exposure to infected individuals is a key predictor of transmission 261 
in the COVID-19 pandemic, and needs to be accounted for in preparation for future 262 
epidemics of respiratory pathogens. Since duration of exposure to known cases can 263 
usually be recalled without the support of digital tools, it could be immediately 264 
incorporated into manual contact tracing interviews. Contacts should be notified and 265 
managed based on duration of exposure as well as other risk factors; knowledge 266 
transfer should prove relatively easy, e.g. through automated tools to support manual 267 
contact tracing staff with their interview-based risk assessment. Beyond identification of 268 
predictors of infection, our quantitative risk measurements also enable optimisation of 269 
different public health outcomes and epidemic management strategies such as amber 270 
notifications and post-exposure prophylaxis. 271 
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A result of particular importance beyond contact tracing is our empirical demonstration 273 
of the continuing increase in probability of transmission with the duration of exposure to 274 
an infected individual. Spending a long time at greater distance from an infected person 275 
carries similar risk to shorter times at smaller distances. ‘Physical distancing’ strategies 276 
to reduce risk should therefore consider the relevance of time as well as space. The 277 
continued increase in risk that we observed over multiple days shows that individuals 278 
can still benefit by beginning precautionary measures even after having already spent 279 
days exposed to an index case, for example in the same household. 280 
 281 
The effectiveness of epidemic control measures depends on the population distribution 282 
of risk. Exposures are highly skewed towards short and low-risk encounters; on the 283 
other hand, transmissions are caused by exposures in a wide range of risk, with 284 
duration varying from an hour to several days. Our results can pave the way towards 285 
more targeted and graded interventions that account for the different frequency and risk 286 
of different exposures.  287 
 288 
The main limitation of our analysis is the absence of data on the context of an exposure: 289 
setting, immunity, level of ventilation etc. The observed risks we report are averages 290 
over these unknown factors. Some of these factors might affect the risk score recorded 291 
by the app and the true risk in different ways: for example being indoors is linked to 292 
poorer ventilation, which increases true risk but not risk score. Manual tracing can 293 
obtain contextual data through interviews; in practice this data is sometimes used to 294 
assess risk, but it should be collected more systematically to build a more informed 295 
classification of risk. Recording direct or indirect information on the context of 296 
exposures, either through the app (e.g. by implementing indoor/outdoor detection) or 297 
linking it from external sources, could significantly improve risk assessment. 298 
 299 
Another limitation of our study is the inclusion of exposures only when their risk score 300 
crossed the app’s notification threshold, excluding transmissions resulting from a large 301 
number of very low-risk exposures. These transmissions are likely to play a role in the 302 
spreading of SARS-CoV-2 in specific settings, but are unlikely to be a major driver of 303 
the epidemic. Also, testing was not compulsory for contacts, therefore infections were 304 
likely under-reported and absolute transmission rates must be interpreted with caution. 305 
Biases in testing or reporting, such as increased propensity to get tested after learning 306 
that a close contact tested positive, could also have affected our results. 307 
 308 
In summary, if deployed at scale, contact tracing apps for infectious diseases have 309 
potential not only as interventions to reduce transmission6,7 but also as tools to develop 310 
quantitative epidemiological understanding. Doing this and translating it into improved 311 
interventions takes time. We should strive to accelerate and improve this process as a 312 
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key step toward preparedness for future epidemics. Tools and methods for quantitative 313 
risk measurement and assessment should be further developed and integrated into the 314 
public health toolbox for the benefits they can bring now and in readiness for rapid 315 
deployment at the start of the next pandemic. 316 
 317 
Recent decades have seen increasing focus on ‘personalised’ or ‘precision medicine’: 318 
using an individual’s biomarkers to inform their treatment and disease prevention. 319 
Epidemiological interventions that are concerned with population health, based on 320 
exposures and risks, have a long way to go to catch up. But the benefit of doing so is 321 
clear: dynamically tailoring responses according to individual risks measured at scale 322 
could turn blunt instruments into sharp ones. Digital contact tracing and the analysis 323 
presented here are a step forward on the path to precision epidemiology. 324 
 325 
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 401 

Figure legends 402 

 403 
Figure 1: App risk score and duration of exposure correlate with probability of 404 
infection. (a) The probability of reported infection, i.e. the probability of a contact 405 
reporting a positive test through the app shortly after receiving an exposure notification, 406 
as a function of three summary metrics of their exposure measurements (‘predictors’): 407 
(i) the maximum risk score from any exposure window (each lasting 30 minutes), (ii) the 408 
cumulative risk score, summed over all exposure windows, (iii) the total duration of the 409 
exposure, summed over all exposure windows. The grey point illustrates our estimate 410 
for the probability of reported infection after 15 minutes at 2 metres’ distance from an 411 
individual with standard infectiousness. Black points in the top panels indicate the bins 412 
used for the risk predictor. (b) Probability of reported infection disaggregated by month 413 
of notification. Central values correspond to maximum likelihood estimates, shading and 414 
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(small) whiskers indicate the 95% confidence intervals (n=7,047,541 contacts). 415 
Tabulated values can be found in Supplementary Tables S6,S7. 416 
 417 

 418 
Figure 2: The probability of transmission is affected by both duration and 419 
proximity as captured by the risk score. Log-log plot of the probability of reported 420 
transmission, i.e. the probability that the contact reported a positive test that we 421 
attributed to the transmission event traced, as a function of the binned duration of 422 
exposure and the mean risk score per hour (i.e. cumulative risk score divided by 423 
duration). The solid lines connect the maximum likelihood estimates for each bin and 424 
the shading around these shows the 95% confidence intervals. Tabulated values can be 425 
found in Supplementary Table S8. 426 

 427 

 428 
Figure 3: The transmission probability per exposure window increases almost 429 
linearly with risk score. The probability of reported transmission per exposure window, 430 
i.e. the estimated probability of transmission in an individual 30-minute exposure 431 
window followed by reporting of a positive test, as a function of the app-measured risk 432 
score for that window. Points show the maximum-likelihood estimate (n=2,507,879 433 
contacts); error bars on the points indicate the 95% confidence intervals. We fit a 434 
weighted robust linear regression without intercept to the points, with shading around 435 
the line indicating the 95% confidence intervals in its gradient, highlighting that the 436 
probability of reported transmission is proportional to the app-measured risk score. 437 
Tabulated values can be found in Supplementary Table S9. 438 
 439 

 440 
Figure 4: Short, intermediate and long exposures all contribute to SARS-CoV-2 441 
transmissions in the population. Distributions over contacts of summary metrics for 442 
their app-recorded exposure measurements, shown separately for all contacts in the 443 
dataset (all of whom were notified, shown in blue) and for ‘transmissions’, i.e. only those 444 
contacts who reported a positive test result through the app in the observation window, 445 
for whom we attributed the transmission to the recorded exposure rather than the 446 
background risk (shown in red). Panel a: the distribution of the maximum risk score. 447 
Panel b: the distribution of the duration of exposure. Panel c: the distribution of the 448 
cumulative risk score over all exposure windows. Panel d: categories of contacts 449 
reflecting the context of their exposure. The first bar shows the fraction of contacts in 450 
each category; the other bars show the fraction of the overall cumulative duration of 451 
exposure, cumulative risk score and number of transmissions that are associated with 452 
each category. Panel e: the fraction of all actually traced transmissions that would still 453 
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be traced if only contacts with exposures longer than a given duration would be traced. 454 
This relative effectiveness of contact tracing at different thresholds corresponds also to 455 
the reduction in Rt in a counterfactual scenario with a higher notification threshold 456 
relative to the reduction in Rt in the factual scenario. Panel f: the fraction of contacts 457 
being infected during the recorded exposure and reporting a positive test, i.e. the ratio 458 
of transmissions to contacts, among all contacts with exposures longer than a given 459 
duration. Shading at the top of the bars in panels e-f shows the 95% confidence 460 
intervals from uncertainty on background risk. Tabulated values can be found in 461 
Supplementary Table S10. 462 
 463 
 464 

Methods 465 

 466 
For all Methods subsections, greater detail is provided in Supplementary Methods. 467 
 468 
Data 469 
 470 
All data for this study comes from contacts notified by the NHS COVID-19 contact 471 
tracing app between April 2021 and February 2022 inclusive. The data generating 472 
process for app data was non-trivial: the primary aim was successfully implementing a 473 
privacy-preserving and data-minimising contact tracing process, not generating data for 474 
epidemiological study. We analysed data recorded by the app with three different 475 
timings/frequencies: first, daily ‘analytics’ data; second, exposure data sent when a 476 
contact is notified of risky exposure; and third, exposure data sent when a contact 477 
reports a positive test. Nowhere in the data is there a unique identifier for each app 478 
user, and so connecting these three data sources required some application of logic, 479 
some assumption, and some subsetting of the data. We next explain each of these 480 
three data sources in turn. 481 
 482 
First, we have described the daily analytics data previously6,7. Each correctly functioning 483 
installation of the app sent one ‘analytics packet’ of data daily (at midnight, regardless 484 
whether the user was notified that day). Each packet indicated whether or not the app 485 
user was notified of risky exposure on that day, and included four fields of ‘individual 486 
characteristics’ which we assumed were usually constant for an individual over the time 487 
scale of one round of contact tracing and testing (i.e. are effectively constant for the 488 
individual): their device model (e.g. ‘iPhone X’), their operating system version on this 489 
device, the postcode district (an area with mean population size of about 20,000 490 
individuals) in which they reported residing, and their lower-tier local authority (LTLA, if 491 
ambiguous from the postcode district). 492 
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 493 
Second, when a contact was notified of a risky exposure to an anonymous case, their 494 
app sent one ‘event packet’ of data to the central server for each exposure window 495 
(lasting a maximum of 30 minutes) that had a risk score over the threshold for 496 
notification. These were sent separately from the daily analytics packets, and only at the 497 
time of notification. Data about proximity to any individual not reporting a positive test 498 
are never sent to the central server. Event packets included information on exposure 499 
proximity, duration and date, and the same four fields of individual characteristics as in 500 
the daily analytics packets. Events packets contained no information about the index 501 
case to whom the contact was exposed (such information is irretrievable by the app by 502 
design) except for whether their infectiousness at the time of exposure was encoded as 503 
‘high’ or ‘standard’. If a single continuous exposure event lasted more than 30 minutes, 504 
it was automatically split into multiple exposure windows that were considered 505 
separately; multiple exposures occurring at different times (i.e. a discontinuous meeting 506 
between the individuals) also resulted in separate exposure windows. Risk calculations 507 
were performed separately on each exposure window. As explained in Results, the 508 
overall risk score used by the app for each window was calculated by multiplying scores 509 
from proximity, duration and index infectiousness, and we normalised these overall 510 
scores by the value for a 15-minute exposure to an index case of standard 511 
infectiousness at a proximity of 2m. With this normalisation the threshold for notification 512 
used by the app was a risk score of 1.11 throughout the period analysed; this value was 513 
chosen as part of the intervention deployment, not as part of analysis here.  514 
 515 
Third, if an individual reported a positive test in the app during the ‘observation 516 
interval’—starting with their notification and ending 14 days after the exposure—the 517 
same event packets that were sent when the individual was notified were sent once 518 
more to the central server, identical except for a flag indicating that this is the report-519 
positive stage not the notification stage. 520 
 521 
Jointly analysing the second and third data sources—the event packets sent at 522 
notification and again at positive test—we could assign to each exposure window the 523 
binary outcome of ‘positive test reported or not’. This follows because we could see 524 
which event packets were sent a second time with all data fields identical except for the 525 
flag indicating either notification or report-positive stage, and which event packets were 526 
not.  An assignment of a reported-positive-test outcome to a given exposure window 527 
does not imply that that exposure window was causal for the individual becoming 528 
infected: the transmission event could have been caused by background risk or by any 529 
other exposure window for the same contact if they had multiple exposure windows. 530 
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When more than one risky exposure window was recorded between a contact and the 532 
index case, these were analysed separately for the risk calculation and sent as separate 533 
event packets to the central server. The absence of a unique individual identifier means 534 
that in general one cannot know whether N event packets sent on the same day (as 535 
determined by the date received centrally) with matching individual characteristics for 536 
the contact (device model, operating system version, postcode district and LTLA) were 537 
sent by (i) 1 contact with N risky exposure windows, or (ii) N contacts, who were notified 538 
on the same day and had matching individual characteristics, with 1 risky exposure 539 
window each, or (iii) anything in between. We therefore restricted the dataset of event 540 
packets to an unambiguous subset constructed as follows. From the daily analytics data 541 
we identified the subset of notifications (of risky exposure) when exactly one contact 542 
with a given combination of individual characteristics was notified on a given day; for 543 
each such notification, we assumed that all event packets with identical characteristics 544 
originated from the same contact, i.e. scenario (i) above. When more than one contact 545 
with given characteristics was notified on a given day, all event packets that day with 546 
those characteristics were excluded from analysis for simplicity. This procedure for 547 
grouping multiple event packets as being from the same contact is specifically for a 548 
single notification event of a given contact: if the same individual is notified multiple 549 
times during our study, each notification event (which will be at least a quarantine period 550 
apart from other notifications, by design) is treated as being from a separate individual, 551 
with a set of event packets associated to each event.  552 
 553 
Extended Data Table 1 summarises sample sizes for the final dataset analysed in this 554 
paper. Supplementary Table S1 summarises sample sizes and aspects of the events 555 
packet data at three of the stages described above: before and after the grouping stage, 556 
and also for only those contacts who reported a positive test. The grouping stage—557 
subsetting to instances when only a single contact with given characteristics was 558 
notified on a given day, for which the matching event packets can be grouped as from 559 
one contact—retains 60% of the events packets. 560 
 561 
Empirical estimation of individuals' probability of testing positive from summary 562 
statistics 563 
 564 
In general, each contact in our dataset had multiple exposure windows, each of which 565 
had a duration (anything up to 30 minutes) and a risk score. We summarised this data 566 
for each contact into metrics including the maximum risk score from any of the windows, 567 
the cumulative risk score over all windows, and the cumulative duration over all 568 
windows. We binned (grouped) contacts by the value of their summary metrics, and 569 
within each bin calculated the fraction of contacts reporting a positive test in the 570 
observation interval. Confidence intervals on this fraction were calculated through the 571 
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associated binomial distribution (defined with the number of ‘trials’ equal to the group 572 
size and the number of ‘successes’ equal to the number of contacts reporting a positive 573 
test). We extrapolated our estimates to risk score 1 (i.e. 2 metres away from an index 574 
case with standard infectiousness for 15 minutes, indicated with a grey circle in Figure 1 575 
as a point of comparison) via a quadratic fit. In Figures 2 and 4, the background risk 576 
estimate from the maximum-likelihood approach outlined below was subtracted from the 577 
result. In all figures, the x coordinate for each bin corresponds to the mean of all scores 578 
within the bin. 579 
 580 
Statistical modelling of the per-exposure-window probability of transmission 581 
 582 
In reality, a given individual that reported a positive test was either infected by the 583 
background, or was infected in their first recorded window, or in their second recorded 584 
window etc. but which of these was actually the case is unknown. Hence we modelled 585 
the process in terms of risk parameters, shared between individuals, which are to be 586 
estimated. We developed a statistical model for the separate contributions to each 587 
individual’s overall risk from each of their exposure windows and from background risk. 588 
Specifically, we modelled the probability of individual i not reporting a positive test 589 
during the observation interval as 590 

(1 – Bi) × (1 – Pt (i’s first window)) × (1 – Pt (i’s second window)) × … × (1 – Pt (i’s last 591 
window))  592 

where Bi is the probability of background transmission (followed by reporting a positive 593 
test), and Pt (i’s nth window) is the probability of transmission during the i’s nth window 594 
(followed by reporting a positive test). The justification for this form is that if an individual 595 
does not report a positive test, this implies that they were not infected by the 596 
background (with subsequent reporting) and were not infected during their first window 597 
(with subsequent reporting) and not during their second window etc. The probabilities 598 
for each of these events not happening should thus be multiplied together to give the 599 
overall probability for none of them happening. We modelled Bi as 1 – (1–bi)β, defining bi 600 
as the sum, over the 14 days following i’s notification, of the weekly-smoothed mean 601 
daily fraction of geographically matched not-recently-notified app users that reported a 602 
positive test (and β is the associated regression coefficient for this term). For small 603 

values of bi the background risk is simply rescaled by a factor β, i.e. Bi ≈  βbi; for larger 604 

values of bi the functional form accounts for saturation of risk. We modelled Pt (i’s nth 605 
window) as depending only on the risk score recorded by the app for i’s nth window. We 606 
binned risk scores into 8 bins, defining a single independent Pt parameter for each bin, 607 
such that the expression above could be rewritten 608 

 (1 – Bi) × ∏ (1 –  𝑃𝑡 (bin 𝑗)8
𝑗=1 )(number of windows from i with risk score in bin j) 609 

The probability that an individual i would report a positive test during the observation 610 
interval is one minus the expression above (the expression for them not reporting a 611 
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positive test in the interval). The likelihood is given by the product of all individuals’ 612 
probabilities for their reported outcome for testing positive. We maximised the likelihood 613 
to estimate the parameters β and the per-window transmission probability for each of 614 
the 8 bins of risk score, plotted in Figure 3, and profiled the likelihood to obtain the 615 
confidence intervals. Figure 3 shows that the per-window transmission risk estimated for 616 
each of the 8 bins is proportional to the app-recorded risk score of that bin. We used a 617 
binning approach to allow the data to reveal this proportionality—instead of taking it to 618 
be true as a modelling assumption—because this proportionality serves as validation for 619 
the app’s risk score capturing real risk.  620 
 621 
As a robustness check, we developed likelihoods based on frailty models with several 622 
sources of heterogeneity among case-contact pairs in the model (see Supplementary 623 
Methods Section 1.6.2). 624 
 625 
Predictors and machine-learning classifiers 626 
 627 
As basic input predictors for machine learning we used the maximum, mean and 628 
cumulative risk score, the duration, and the number of exposures in each bin of risk 629 
score. Additional predictors include date, region, rural/urban score, background rate of 630 
infections, day of the week with more exposure windows and peak daily duration. 631 
Classifiers used include logistic regression, gradient boosting machines31 and extreme 632 
gradient boosting XGBoost32 with 10, 100 and 400 rounds. 633 
Optimal strategies for amber notifications were obtained using a general approach for 634 
targeted interventions33 presented in Supplementary Discussion. 635 
 636 

31. Greenwell, B., Boehmke, B., Cunningham, J. & Developers, G. B. M. gbm: Generalized 637 

Boosted Regression Models. (2020). 638 

32. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 639 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 640 

785–794 (Association for Computing Machinery, 2016).  641 

33. Petrie, J., Ferretti, L. & Masel, J. Optimal targeting of interventions uses estimated risk of 642 

infectiousness to control a pandemic with minimal collateral damage. medRxiv (2023) 643 
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Extended Tables 680 

 681 
Extended Data Table 1: Summary statistics for the NHS COVID-19 app exposure dataset. 682 
We report statistics only for exposure windows that were successfully grouped and assigned to 683 
a single contact. These windows represent about 60% of the whole dataset. See Supplementary 684 
Table S1 for further details on the raw exposure window data before the grouping stage. 685 
 686 
 687 
Extended Data Table 2: Summary statistics for different types of contacts in our dataset. 688 
Household contacts (defined as contacts whose exposures cover more than 15 windows in a 689 
single day), recurring contacts (defined as non-household contacts whose multiple exposure 690 
windows occur on two different days or more), one-day contacts (defined as non-household 691 
contacts whose multiple exposure windows occur all in a single day) and fleeting contacts 692 
(defined as contacts with a single exposure window). 693 

 694 

Extended Figures 695 

 696 
Extended Data Figure 1: The app has more nuanced distance-duration rules than 697 
manual contact tracing. Coloured regions show regions of the distance-duration space 698 
where contacts are notified digitally (depending on the infectiousness of the index case) 699 
or manually. These boundaries apply in theory, though in practice distances are 700 
imperfectly estimated from Bluetooth signal attenuation. 701 
 702 
 703 
Extended Data Figure 2: The probability of transmission depends linearly on 704 
duration and cumulative risk for short exposures, then sublinearly. Log-log plots of 705 
the probability of reported infection (the fraction of notified contacts who report a 706 
positive test shortly after notification) and transmission (subtracting the maximum-707 
likelihood correction for background risk) as a function of cumulative risk score and 708 
duration of exposure. Points correspond to maximum likelihood estimates. The brown 709 
bands show the 95% confidence interval for linear regressions on the points shown, i.e. 710 
a power-law relation between risk predictors and the probability of reporting a positive 711 
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test. The maximum-likelihood estimates for the exponents are Pt ~ rcum
0.46±0.01, Pt ~ 712 

d0.47±0.01 (infection) and Pt, ~ rcum
0.69±0.04, Pt ~ d0.76±0.04 (transmission). For the regressions 713 

of the probability of transmission, when restricting to low values of the risk predictor 714 
(cumulative risk <20, duration <3 hours), the relationships were approximately linear: Pt 715 
~ rcum

0.95±0.07, Pt ~ d0.99±0.09 (orange bands), as expected from theoretical arguments. The 716 
± values shown in the exponents are standard deviations. 717 
 718 
 719 
Extended Data Figure 3: The monotonic relationship between the risk score per 720 
window and the probability of transmission in that window is robust with respect 721 
to the inclusion of individual heterogeneities in the model. Maximum-likelihood 722 
estimates of the probability of reported transmission per exposure window, i.e. the 723 
estimated probability of transmission in an individual exposure window followed by 724 
reporting of a positive test, as a function of the binned app-measured risk score for that 725 
window. The grey line and shading show the maximum-likelihood monotonic risk (and 726 
the corresponding 95% CI) shown in Figure 3. Lines of different colours show 727 
maximum-likelihood estimates from models that do not assume monotonicity; these 728 
models include positive-test ascertainment and/or different functional forms for 729 
heterogeneities in risk (see Supplementary Methods Section 1.6.2). 730 
 731 
 732 
Extended Data Figure 4: The transmission probability per exposure window 733 
decreases for contacts located in conurbations and increases for low-risk 734 
exposures during the weekend. The probability of reported transmission per exposure 735 
window, i.e. the estimated probability of transmission in an individual 30-minute 736 
exposure window followed by reporting of a positive test, is shown as a function of the 737 
app-measured risk score for that window, as in Figure 3 but with stratifications of 738 
contacts. Panel a: Stratification by weekday or weekend. Panel b: Stratification by rural 739 
area, urban area (town or city) and conurbation (urban agglomeration). Lines connect 740 
the maximum-likelihood estimates for each bin; shaded areas indicate 95% confidence 741 
intervals. 742 
 743 
 744 
Extended Data Figure 5: Duration and cumulative risk are the best predictors of 745 
infection, only marginally improved by machine learning. Sensitivity/specificity 746 
(receiver operating characteristic) curve for different methods and thresholds to classify 747 
individuals exposed to an index case as at risk or not. Our dataset contained only 748 
individuals who were actually notified; we varied the classification thresholds to 749 
interpolate between continuing to notify all of these individuals (top right) and notifying 750 
none of these individuals (bottom left). Different colours show different classification 751 
methods. For each method we varied thresholds to explore their balance between 752 
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sensitivity (notifying individuals who would report a subsequent positive test) and 753 
specificity (not notifying individuals who would not). ML abbreviates machine learning, 754 
AUC the area under the curve. 755 
 756 
 757 
Extended Data Figure 6: Illustration of optimal strategies to reduce social costs of 758 
contact tracing via amber/red alert notifications. In this illustrative scenario we 759 
considered combinations of three measures: red notification leading to quarantine after 760 
notification, amber notification leading to PCR test after notification (followed by self-761 
isolation if positive), and no notification. We assume that the risk of infection would be 762 
assessed based on duration of exposure. We consider optimal strategies leading to 763 
minimisation of total costs for patient and public health for a given epidemiological 764 
effectiveness; see Supplementary Discussion for details and assumptions on relative 765 
costs and effectiveness. Panel a: each horizontal line represents an optimal strategy 766 
(quarantining high-risk contacts, testing intermediate-risk contacts, not tracing low-risk 767 
contacts) that has the same effectiveness as a baseline quarantine-only strategy for 768 
contacts above a threshold duration of exposure (y axis). Panel b: the decrease in cost 769 
of the optimal strategy relative to the baseline strategy (quarantine for all traced 770 
contacts). 771 
 772 
 773 
Extended Data Figure 7: Illustration of optimal strategies to increase effectiveness 774 
of contact tracing via amber/red alert notifications. Same as Extended Data Figure 775 
6, but considering optimal strategies that keep the total costs fixed while maximising 776 
epidemiological effectiveness. Panel a: each horizontal line represents an optimal 777 
strategy that has the same cost as a baseline quarantine-only strategy for contacts 778 
above a threshold duration of exposure (y axis). Panel b: the increase in effectiveness 779 
of the optimal strategy relative to the baseline strategy. 780 
 781 
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6
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Extended Data Fig. 7
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Extended Data Table 1
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Extended Data Table 2
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