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Abstract

Motivation: The ability to distinguish imported cases from locally acquired cases has important consequences for
the selection of public health control strategies. Genomic data can be useful for this, for example, using a phylogeo-
graphic analysis in which genomic data from multiple locations are compared to determine likely migration events
between locations. However, these methods typically require good samples of genomes from all locations, which is
rarely available.

Results: Here, we propose an alternative approach that only uses genomic data from a location of interest. By com-
paring each new case with previous cases from the same location, we are able to detect imported cases, as they
have a different genealogical distribution than that of locally acquired cases. We show that, when variations in the
size of the local population are accounted for, our method has good sensitivity and excellent specificity for the
detection of imports. We applied our method to data simulated under the structured coalescent model and demon-
strate relatively good performance even when the local population has the same size as the external population.
Finally, we applied our method to several recent genomic datasets from both bacterial and viral pathogens, and
show that it can, in a matter of seconds or minutes, deliver important insights on the number of imports to a
geographically limited sample of a pathogen population.

Availability and implementation: The R package DetectImports is freely available from https://github.com/xavierdide
lot/DetectImports.

Contact: xavier.didelot@warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many infectious disease pathogens spread mostly within multiple
geographical locations, for example, countries and are also occa-
sionally imported from one location to another. When pathogen
genetic data are available from several locations, a phylogeographic
approach can be used to infer past migrations between countries
(Bloomquist et al., 2010; Lemey et al., 2009). Here, however, we
consider the situation where genetic data are available only from a
single location, which is subject to imports from other locations
about which little is known. This situation occurs frequently, for ex-
ample, due to high discrepancies between the sequencing capacities

of high- and low-income countries. Furthermore, even if limited
sequences are available from other locations, biases in sampling be-
tween locations can often confuse phylogeographic methods (De
Maio et al., 2015).

We therefore address the problem of inferring the number and
phylogenetic location of imports into a population based on samples
taken only from that population. This problem is important for
determining which measures to take in the control of infectious dis-
eases, since different measures are effective against importation and
local transmission. It is also important to consider the presence of
imports into a population before attempting to reconstruct local
transmission chains with one of the recently developed methods for
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this purpose (De Maio et al., 2016; Didelot et al., 2017; Jombart
et al., 2014; Klinkenberg et al., 2017). Only one of these methods
considered the possibility of importation by performing a test based
on the number of mutations between a case and its most likely
donor (Jombart et al., 2014).

Our starting point is a dated phylogeny for the samples at the lo-
cation of interest. Such a phylogeny can be constructed either direct-
ly from the genomes using BEAST (Suchard et al., 2018) or BEAST2
(Bouckaert et al., 2019) or by dating the nodes in a standard phyl-
ogeny using treedater (Volz and Frost, 2017), TreeTime (Sagulenko
et al., 2018) or BactDating (Didelot et al., 2018). We consider the
leaves of this dated phylogeny in increasing order of sampling dates,
asking ourselves for each leaf whether it is likely to be the result of
local transmission from the population sampled so far. If not, the
leaf is the first representative of a previously undetected imported
population, even though it is unlikely to be the import itself since in
most situations only a relatively small fraction of cases are sampled
and present in the phylogeny. This chronological approach is im-
portant to assess the true number of imports: for example, if an im-
port occurred followed by local transmission of the imported
variant, the first sample from this variant should be labelled as an
import, but subsequent samples from the same variant should not.
The approach also lends itself naturally to the online assessment of
imports as new cases arise, which is often needed when performing
infectious disease epidemiology in real time.

Since we do not have any information about the external sources
and do not want to make any assumptions about them, we build
statistical models based on the hypothesis of local transmission,
which are fitted using Bayesian methods. When a leaf of the dated
phylogeny is found to be a bad fit for this local model, we deduce
that an importation is likely to have occurred. Our model is based
on the coalescent framework (Donnelly and Tavaré, 1995;
Kingman, 1982) and in particular, its extension to heterochronous
sampling (Drummond et al., 2002, 2003). We also use the version of
the coalescent model that accounts for variations in the population
size (Donnelly and Tavaré, 1995; Griffiths and Tavare, 1994). We
use simulated datasets to show that our approach has an excellent
specificity and a good sensitivity for the detection of imports. We
also show that our approach can be useful in practice by analysing
several recently published real datasets.

2 Materials and methods

2.1 Coalescent framework and notations
Let n denote the number of tips in a dated phylogeny G, let s1:n de-
note the dates of the leaves, and c1:ðn�1Þ denote the dates of the in-
ternal nodes. Let A(t) denote the number of lineages at time t in G.
This is easily computed as the number of leaves dated after t minus
the number of internal nodes dated after t:

AðtÞ ¼
Xn

i¼1

1½si > t� �
Xn�1

i¼1

1½ci > t�: (1)

In the coalescent model, each pair of lineages coalesces at rate
1=NeðtÞ, where NeðtÞ is the effective population size at time t
(Griffiths and Tavare, 1994). Note that here and throughout this
article, we use the notation Ne and the name effective population
size to denote what is in fact the product of the generation duration
and the population size in an idealized Wright–Fisher population.
Let us initially assume that this function NeðtÞ is known, and we
will see later how to extend to the situation where it is not known.
The total coalescent rate for all pairs at time t is therefore equal to:

kðtÞ ¼ AðtÞ
2

� �
1

NeðtÞ
with the notation

0
2

� �
¼ 1

2

� �
¼ 0: (2)

However, here we consider an alternative equivalent formulation
of the coalescent model, in which the phylogeny is formed by iterat-
ing over the leaves one by one in increasing order of date, and con-
sidering how each leaf coalesces with the phylogeny made by the
previous leaves (Carson et al., 2022; Didelot et al., 2014). To do so,

we consider that the dates s1:n of the leaves are in increasing order,
and that the dates c1:ðn�1Þ of the internal nodes are ordered so that
ck�1 corresponds to the date of the internal node created when add-
ing the leaf indexed k to the tree made of the first k � 1 leaves.
Figure 1 shows an example of this notation used for labelling the
leaves and nodes of the tree. With these notations, the tree made of
the k first leaves contains the leaves with dates s1:k and the nodes
with dates c1:ðk�1Þ. We can therefore define the number AkðtÞ of line-
ages at time t in the tree made of only the first k samples in a way
similar to Equation 1:

AkðtÞ ¼
Xk

i¼1

1½si > t� �
Xk�1

i¼1

1½ci > t�: (3)

Note in particular that A(t) from Equation 1 is equal to AnðtÞ
from Equation 3 as expected since this corresponds to the number of
lineages in the tree made of all n leaves and n � 1 internal nodes.
The rate at which a new leaf at date sk coalesces with the tree made
of the first k � 1 leaves is then:

kkðtÞ ¼ Ak�1ðtÞ
NeðtÞ

: (4)

The difference in Equation 4 compared to Equation 2 is that we
are now considering coalescence of a single given lineage leading to
leaf at date sk, rather than any two pairs of lineages, so that the bi-
nomial term for the number of lineages is replaced with simply the
number of previous lineages. Note that after the date of leaf k � 1,
i.e. for t > sk�1, we have no previous lineages, i.e. Ak�1ðtÞ ¼ 0, so
that kkðtÞ ¼ 0, i.e. coalescence is impossible. On the other hand, be-
fore the date of leaf k � 1, i.e. for t < sk�1, we have always at least
one previous lineage so that kkðtÞ > 0.

Let Ck denote the coalescent interval for leaf k, which is defined
as the sum of branch lengths between time sk and ck�1 in the phyl-
ogeny made of the k � 1 first leaves. This represents the amount of
branch lengths before the new leaf k coalesced in the previous tree.
Figure 1 shows an example of how the coalescent interval is
counted. More formally, we can define the coalescent intervals as:

Ck ¼
ðsk

ck�1

Ak�1ðtÞdt: (5)
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Fig. 1. Illustration of the notations used for a genealogy with n¼ 10 leaves. The

leaves are indexed by k ¼ 1; . . . ; n in increasing order of sampling dates sk. The in-

ternal nodes are indexed by k ¼ 1; . . . ; n� 1 so that the leaf k coalesces at node k �
1 with the genealogy made of the previous leaves 1; . . . ; k� 1. The date of the in-

ternal node k is denoted ck. The coalescent interval for the last leaf k¼10 at date

s10 is shown in red
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To obtain a given value of Ck, we need to have no coalescence of
the new lineage between ck�1 and sk, which happens with probabil-

ity exp �
Ð sk

ck�1

Ak�1ðtÞ
NeðtÞ dt

� �
, and a coalescent event at time ck�1 with

one of the Ak�1ðck�1Þ lineages existing at that time, which happens

with rate 1
Neðck�1Þ. The probability density function of Ck can there-

fore be written as:

pðCkÞ ¼
1

Neðck�1Þ
exp �

ðsk

ck�1

Ak�1ðtÞ
NeðtÞ

dt

 !
: (6)

Note that Ck does not appear on the right-hand side because it is
fully determined by the values of the leaf and node dates, as shown
in Equation 5. This formula for the distribution of Ck is valid under
the assumptions of the coalescent model with varying population
size (Donnelly and Tavaré, 1995; Griffiths and Tavare, 1994).

2.2 Detecting imports into a population
Our aim is to find the number and phylogenetic location of import
events in a given dated phylogeny. We address this question by con-
sidering each leaf of the tree and whether it is likely to be the result
of a previously unreported import, given the dated phylogeny made
of only the previous samples. If a leaf indexed k is not the result of a
new import, then its coalescent interval Ck is distributed as
described in Equation 6, where NeðtÞ is the size of the local popula-
tion. On the other hand, if the leaf indexed k is the result of a new
import, its coalescent interval will be larger, depending on how dis-
tantly related the source of the import is. We do not attempt to ex-
plicitly model the source of imports firstly because the data contain
little information about import sources, and secondly because we do
not want to make assumptions on the sources. We expect most cases
in the dated phylogeny to represent local transmission, with only a
relatively small ratio (e.g. <5%) of the number of imports to the
number of cases. Only the chronologically first case of any imported
population is classified as an import, whereas further cases from the
same imported population represent local transmission following
the import and therefore are not classified as imports. Thus, if a sin-
gle import occurred followed by local transmission of the imported
variant, only the first representative of the imported population will
be labelled as an import. The first case in the whole phylogeny is not
tested for importation since it does not have a coalescent interval.

To progressively explain our methodology for the detection of
imports, we will first assume that the demographic function is a
known constant, then extend to the case of an unknown constant
value, and finally extend to the general case of an unknown variable
population size function.

2.3 Case of a known constant population size
Let us first assume that the demographic function NeðtÞ is a known
constant Ne. In this case, Equation 6 simplifies into:

pðCkÞ ¼
1

Ne
exp �

ðsk

ck�1

Ak�1ðtÞ
Ne

dt

 !
¼ 1

Ne
exp �Ck

Ne

� �
(7)

which means that in the case of a constant population size, the co-
alescent intervals are independent and identically distributed as ex-
ponential with mean Ne. If the leaf indexed k is the first reported
case of an import, it is likely to have a coalescent interval Ck greater
than would be expected if transmission happened only locally,
which can be used to form a simple one-sided statistical test with P-
value:

pk ¼ exp �Ck

Ne

� �
: (8)

2.4 Case of an unknown constant population size
In the case where the population size function is a constant NeðtÞ ¼
Ne which is unknown, we need to estimate it in order to detect
imports. We take a Bayesian viewpoint to perform this estimation,

which requires setting a prior pðNeÞ and combining it with the likeli-
hood terms in Equation 7 to obtain the posterior distribution of Ne:

pðNejGÞ / pðNeÞ
Yn

k¼2

1

Ne
exp �Ck

Ne

� �
: (9)

Note that the phylogeny G is treated as observed data, from
which the values of the coalescent intervals Ck can be computed
using Equation 5. For pðNeÞ, we use a InvGamma(0.001,0.001)
prior, which means that the exponential rate parameter 1=Ne fol-
lows approximately its improper Jeffrey’s prior (Spiegelhalter et al.,
2002). The Gamma distributions used here and throughout this art-
icle are parameterized in terms of the shape and rate parameters, re-
spectively. This same uninformative prior on Ne was previously
used in a method aimed at building dated phylogenies (Didelot
et al., 2018).

The posterior distribution in Equation 9 assumes that there are
no imports into the local population, so that all coalescent intervals
are distributed according to Equation 7. The estimated value of Ne

could therefore be biased upwards compared to the correct value of
Ne in the local population, since any import is likely to have higher
coalescent interval values. There are three reasons why this is not a
concern in practice. Firstly, we expect only a relatively small number
of the leaves to be new imports. Secondly, the distribution of coales-
cent intervals in the local population (Equation 7) is permissive to
high values, so that a few high values do not push up the estimated
mean dramatically. Thirdly, if Ne is overestimated, then we are less
likely to detect imports due to having unexpectedly high coalescent
intervals. This would therefore contribute to making the method
more conservative in the detection of imports, rather than having
false positives. High sensitivity is impossible to achieve anyway since
quick back-and-forwards migrations are unidentifiable.

We can use a Monte Carlo approach to generate a sample of N
values ðN1

e ; . . . ;NN
e Þ from the posterior distribution in Equation 9,

and we can then adapt Equation 8 to compute a posterior predictive
P-value (Gelman et al., 1996) to test if the leaf at date sk is the result
of a previously undetected import as:

pk ¼
1

N

XN
i¼1

exp �Ck

Ni
e

� �
: (10)

2.5 General case of an unknown variable population

size
The distribution in Equation 6 represents the model for coalescent
intervals if only local transmission occurred and the population size
was the function NeðtÞ. However, this equation cannot be used in
the general case because the demographic function NeðtÞ is un-
known. Phylodynamic methods can be applied to reconstruct the
NeðtÞ function either at the same time as reconstructing a dated
phylogeny (Baele et al., 2016; Ho and Shapiro, 2011; Pybus and
Rambaut, 2009) or in a subsequent step (Didelot et al., 2021b;
Karcher et al., 2017; Lan et al., 2015; Volz and Didelot, 2018).
However, all these methods make some assumptions about the
demographic function. Furthermore, even if this function was
known the resulting distribution for the coalescent intervals in
Equation 6 would not be computable analytically. Since our aim
here is not to estimate this function but rather to detect imports, we
take a different approach.

In the general case, NeðtÞ is not constant, but when the coales-
cent time ck�1 is soon before the sampling date sk, then NeðtÞ should
be approximately constant between ck�1 and sk, so that Ck is ap-
proximately exponential as in Equation 7. We therefore consider
that the coalescent intervals Ck are exponentially distributed with a
mean lðskÞ which depends on the date of sampling sk. This approxi-
mation is necessary since the full distribution is unknown, and
results on simulated datasets show that this test is robust.

To perform Bayesian inference under this model, we need to de-
fine the joint prior pðlðs2Þ; lðs3Þ; . . . ; lðsnÞÞ. We use a Gaussian pro-
cess with mean zero and covariance function kðs; s0Þ equal to the
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Matérn kernel with smoothness � ¼ 3=2 (Genton, 2002; Williams
and Rasmussen, 2006):

kðs; s0Þ ¼ a2 1þ
ffiffiffi
3
p

r

l

� �
exp �

ffiffiffi
3
p

r

l

� �
with r ¼ js� s0j: (11)

The spectral density function of this kernel in one dimension is:

SðxÞ ¼ 4a2

ffiffiffi
3
p

l

� �3
3

l2
þ x2

� ��2

: (12)

This kernel is characterized by two parameters: the length scale l
which represents how quickly the distance between two points
reduces their correlation, and the scale a which represents the mar-
ginal standard deviation of the kernel. Specifying the prior on these
two parameters completes the definition of the prior model:

l � InvGammaðal;blÞ

a � Half �NormalðraÞ

logðlðsÞÞ � GPfl;agð0; kðs; s0ÞÞ

: (13)

This prior is applied to the dated phylogeny rescaled in the
interval ½�1; 1�, so that the root is at time t ¼ � 1 and the most
recent leaf at time t¼1. This ensures that the timescale used in
the dated phylogeny does not affect the analysis: for example,
the same dated phylogeny with branch lengths measured in years
or in days will produce exactly the same results. In all examples
shown here, we used hyperparameter values al ¼ bl ¼ ra ¼ 5. We
will show that the choice of these values has little effect on our
results.

We want to perform inference in a way that is not computation-
ally intensive even for large phylogenetic trees. Combining this ob-
jective with the necessary assumption of dense sampling, together
with the assumption that the coalescent rate does not fluctuate too
wildly, lends itself naturally to the use of an approximation of the
full-rank Gaussian Process. We resort to using a Hilbert space
Gaussian process approximation recently described (Riutort-Mayol
et al., 2020; Solin and Särkkä, 2020). This requires setting two ap-
proximation parameters M and L corresponding to the number of
terms in the expansion and the domain size, respectively. We use
M¼20 and L¼2 as previously suggested (Riutort-Mayol et al.,
2020).

This model is fitted to the data using the dynamic Hamiltonian
Monte Carlo method implemented in Stan, which provides a con-
venient way to specify and infer the variable population size feature
(Betancourt, 2018; Carpenter et al., 2017). For a leaf at date sk,
this results in a Monte Carlo sample of size N denoted
ðl1ðskÞ; . . . ; lNðskÞÞ from the posterior distribution of lðskÞ. We can
then use these values to detect imports using a similar posterior pre-
dictive P-value as in Equation 10, namely:

pk ¼
1

N

XN
i¼1

exp � Ck

liðskÞ

� �
: (14)

The statistical tests in Equations 8, 10 and 14 are applied to all
leaves except the first one, resulting in n � 1 separate tests. Multiple
testing correction could be considered to limit the number of false
positives, however methods to do so pose their own problems
(Gelman et al., 2012; Rothman, 1990) therefore in all the results
presented below we report uncorrected P-values and consider
whether they are below a threshold of 0.01, unless otherwise stated.
Although this choice is somewhat arbitrary, our results on simulated
data show that they provide a good balance between sensitivity and
specificity. In our graphical representation of the results, we show
which cases are below the 0.01 threshold and also which cases are
below the more stringent 0.001 threshold. For users wishing to
apply a multiple testing correction, we provide the option to use for
example the Bonferroni correction or the false discovery rate correc-
tion (Benjamini and Hochberg, 1995).

2.6 Implementation
We implemented the simulation and inference methods described in
this article in a new R package entitled DetectImports which is
available at https://github.com/xavierdidelot/DetectImports for R
version 3.5 or later. We used the cmdstanr package (https://mc-stan.
org/cmdstanr/) version 0.5.2.1 as interface to Stan version 2.3
(Carpenter et al., 2017) and the posterior package version 1.2.2
(https://mc-stan.org/posterior/) to store and analyse the results. Our
default settings (used throughout this article) use four chains with
4000 iterations each (1000 for warmup and 3000 for sampling) and
an adaptation target acceptance statistic d ¼ 0:9. This number of
chains is a choice of convenience, to show that good results can be
obtained on a standard laptop, but users have the option to increase
this number if wanted. We made sure that no divergent transitions
occurred during the sampling phase. Convergence and mixing of the
algorithm were verified by checking that for all parameters the
improved R̂ statistics were lower than 1.05 (Vehtarh et al., 2021)
and the effective sample sizes greater than 2000. All code and data
needed to replicate the results are included in the ‘run’ directory of
the DetectImports repository.

3 Results

3.1 Accounting for variations in the local population size

is necessary to correctly identify imports
We can show that the model with constant population size
(Equation 10) is insufficient to capture even relatively simple realis-
tic scenarios, and statistical inference based on the variable
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Fig. 2. Illustrative application to a single simulated dataset showing that ignoring

variations in the local population size can lead to false positives in the detection of

imports. (A) Simulated phylogeny. (B) Inference of imports under the model with

constant population size. (C) Inference of imports under the model with variable

population size. In (B, C), the inferred mean and 95% credible intervals of the mean

coalescent intervals over time are shown in blue
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population size model (Equation 14) is necessary to correctly iden-
tify imports. The simulated phylogeny in Figure 2A includes 100
samples taken uniformly throughout a single year, from the 1st
January to the 31st December. The ancestral process is the standard
coalescent model without any import but with varying effective
population size (Donnelly and Tavaré, 1995; Griffiths and Tavare,
1994), which increased 5-fold in the second half of the year com-
pared to its previous level, from Ne ¼ 0:2 year before the 1st July to
Ne ¼ 1 year afterwards. Consequently, the branches tend to be lon-
ger in the second half of the year compared to the first half of the
year and the part of the ancestry that occurred in the year prior to
sampling (Fig. 2A). We first attempted to detect imports in this phyl-
ogeny under our model assuming a constant local population size.
This took approximately 1 s on a standard laptop, and the result is
shown in Figure 2B. The mean coalescent interval was estimated to
be 0.44 year (with 95% credible interval 0.37–0.54), with the three
samples with the largest coalescent intervals having been identified
as likely imports (i.e. with a posterior predictive P-value P<0.01).
This is because these three tips had coalescent intervals higher than
would be expected by chance if the population size had been con-
stant, whereas these values were in fact caused by the increase in the
population size in the second half of the year. We then inferred using
our full model which accounts for variations in the local population
size. This took approximately 3 s on a standard laptop, and the
results are shown in Figure 2C. The mean coalescent interval was
inferred to have increased significantly from the start until the end
of 2020, from 0.19 (0.11–0.36) to 1.33 (0.74–2.54). Consequently,
the three tips with the largest coalescent intervals were no longer
detected as imports, i.e. the using the full model removed the false
positives.

The example in Figure 2 shows that ignoring the variations in
the local population size can lead to the detection of imports that
are not real. Conversely, it is important to account for variations in
the local population size to avoid real imports going undetected. To
illustrate this, we simulated a phylogeny shown in Supplementary
Figure S1A in which the local population starts on 1st January, with
a single import happening on 1st April. Both the original and
imported strains follow the same linear growth in effective popula-
tion size NeðsÞ ¼ 10s, where s is measured in years since the strain
introduction. The original and imported strains coalesce together
soon before the 1st January. A total of 500 genomes were sampled
between the 1st January and the 31st December, with sampling hap-
pening at a rate proportional to the effective population size of each
strain. When inferring imports under the constant population size
model as shown in Supplementary Figure S1B, the correct import
was not detected (P¼0.19), but seven spurious imports were
detected (P<0.01). On the other hand, when inferring imports
under the variable population size model as shown in
Supplementary Figure S1C, the correct import was the only one to
be detected (P¼0.002). The run times were approximately 2 and
13 s on a standard laptop computer, for the inference with constant
and variable population size, respectively.

We performed 100 repeats of a similar simulated scenario to the
one described above, except that after the local population was initi-
ated on the 1st January, there were two imports in each simulation
on the 1st April and on the 1st July. A total of 500 genomes were
sampled throughout the year between the 1st January and the 31st
December, with sampling happening at a rate proportional to the ef-
fective population size of each of the three strains (initial plus two
imports). We performed inference under both models with constant
and variable population size, and computed the sensitivity and speci-
ficity of both import classifiers at different values of the posterior
predictive P-values. This resulted in the receiver operating character-
istic (ROC) curves shown in Figure 3. The ROC curve for the model
with constant population size is far from perfect, with an area under
the curve (AUC) of 0.895. This AUC value represents the probability
of giving a lower posterior predictive P-value of import to an
imported sample compared to a sample that was not imported. In
contrast, the model with variable population size has an almost per-
fect ROC curve, with an AUC of 0.997 (Fig. 3). Considering
P¼0.01 as the cut-off for significance, the inference under the

constant population size model has a specificity of 98.6% and a sen-
sitivity of only 40.5%, whereas the inference under the variable size
model has a specificity of 99.7% and a sensitivity of 97.0%. To en-
sure that our choice of the prior did not have undue effect on the
results, we repeated this ROC analysis with hyperparameter values
al ¼ bl ¼ ra ¼ 2 and found that it made little difference
(Supplementary Fig. S2).

This ROC analysis (Fig. 3) confirms the result illustrated with
specific examples in Figure 2 and Supplementary Figure S1 about
the importance of accounting for the variations in the local popula-
tion size in order to detect imports with good specificity and sensi-
tivity, and the variable population size model will therefore be used
throughout the rest of this article. The time taken to run analyses in
the default conditions under the variable population size model
grows approximately linearly with the number of genomes in the
phylogeny (Supplementary Fig. S3). We also performed inference
based on simulations using a logistic growth model for imported
populations (Helekal et al., 2021) and found similarly good accur-
acy of the import detection (Supplementary Fig. S4).

3.2 Inference on simulated datasets from the structured

coalescent model
The simulations above were considering only the phylogenetic pro-
cess within the local population. Here, we consider a more complex
model in which the global population is structured into several loca-
tions, also known as demes, with migrations potentially occurring
from any deme to any other. The corresponding genealogical pro-
cess is described by the structured coalescent model (Hudson, 1990;
Muller et al., 2017; Notohara, 1990). We used the software Master,
a stochastic simulator of birth–death master equations, (Vaughan
and Drummond, 2013) to simulate under this model with D demes
which all had the same effective population size Ne ¼ 1 year. The
backward-in-time migration rate from any deme to any other was
sampled uniformly at random between 0 and 0:5=ðD� 1Þ, so that
the expected waiting time until a migration from one deme to any of
the other D � 1 demes was identical for all values of D. Only one of
the D demes was sampled 500 times with dates taken uniformly at
random over a period of a year. We performed 100 simulations with
D¼5, D¼3 and D¼2, each.

For each simulated dataset, we counted the correct number of
imports into the local population by looking through the whole mi-
gration history for migrations into the local deme that led directly
(i.e. without any other migration event on the phylogenetic path) to
at least one sampled leaf. We also inferred the number of imports
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based on the dated phylogeny of the samples from local deme, using
the model with variable population size, which took between 15 and
20 s to run for each simulated dataset. Figure 4 compares the correct
and inferred number of imports in each simulation. The number of
detected imports is correlated with the correct number of imports in
all three cases with D¼5 demes (Fig. 4A), D¼3 demes (Fig. 4B)
and D¼2 demes (Fig. 4C). However, in all three cases, we find that
the number of imports has been estimated, with on average only
81%, 76% and 69% of imports being detected for D¼5, D¼3 and
D¼2 demes, respectively. This increasing relationship between the
number of demes and the ability to detect imports into one of the
demes is as expected: when the number of demes is larger, the local
population represents a smaller proportion of the global population.
Each import becomes more clearly separated in the phylogenies and
therefore easier to detect. The fact that some imports remain impos-
sible to detect in all three cases is also expected, since there is always
the possibility that a lineage going back in time migrates out of the
local population and back into it quickly afterwards, making it ba-
sically undetectable. Finally, the case with D¼2 demes is especially
interesting since in this case there are just two populations of equal
sizes, one which is sampled and the other one not. Detecting imports
is clearly challenging in these conditions, harder than we would en-
visage in most applications to real data where the local population
would typically be a small fraction of the global population. It is
therefore encouraging to see that even in this difficult case our
method was able to detect the majority of the imports (Fig. 4C).
Analysis of the same simulated datasets under the constant popula-
tion size model had a slightly improved power to detect imports, as
would be expected since the local population size was constant in
the simulations (Supplementary Fig. S5).

3.3 Application to real datasets
We also applied our importation detection methodology to real
datasets and considered how our inference compares with accepted
epidemiological wisdom about a number of outbreaks originated by
diverse pathogens.

First, we analysed a small dataset of 132 genomes from an out-
break of Neisseria gonorrhoeae (Didelot et al., 2016). The genomes
were collected between 1995 and 2000 as part of a prospective study
on gonorrhoea in Sheffield (Ward et al., 2000), and all belonged to
ST12 which was the most prevalent NG-MAST type in this setting
(Bilek et al., 2007). In the previous study of these data (Didelot
et al., 2016), a dated phylogeny was built using BEAST (Suchard
et al., 2018) as shown in Supplementary Figure S6A. Analysis took
approximately 5 s and the result is shown in Supplementary Figure
S6B. No detectable import was found in this dataset, confirming
that all the genomes seem to belong to the same outbreak and can
be analysed as such as previously performed (Didelot et al., 2016).
In particular, there was a gap of about 2 years in the sampling in
1998 and 1999, with most genomes originating before this gap and
only seven genomes corresponding to cases afterwards. In principle,
this gap could have been explained by a clearance and reintroduc-
tion of ST12 in the region, but our analysis shows that this is not the
case. Instead, the later cases are descended from the earlier ones
through chains of unsampled transmission intermediates, as previ-
ously proposed (Didelot et al., 2016) using outbreaker (Jombart
et al., 2014).

Second, we analysed a collection of 155 Vietnamese genomes
from the VN clade of the emerging enteric pathogen Shigella sonnei
(Holt et al., 2013). These genomes were sampled between 1995 and
2010, and a dated phylogeny was built using the additive relaxed
clock model in BactDating (Didelot et al., 2021a). The import ana-
lysis took approximately 6 s and the result is shown in Figure 5. A
single import was found (isolate labelled 30 451) with a posterior
predictive P-value of 0.0057. This isolate may not look remarkably
different at first sight on the phylogeny (Fig. 5A), but it is the second
most recent isolate in the collection and has by far the largest coales-
cent interval (Fig. 5B). We repeated this analysis for 100 phylogenies
from the posterior sample produced by BactDating (Supplementary
Fig. S7). The results were robust to phylogenetic uncertainty, with
only isolate 30 451 being a likely import. The P-values for this
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isolate had an interquantile range between 0.007 and 0.014
(Supplementary Fig. S7). Given these P-values, we cannot be abso-
lutely certain if this isolate was indeed imported, but if so it would
most probably represent a relatively quick migration out and back
into the Vietnamese population, for example via a neighbouring
country.

We also analysed a collection of 1031 genomes of Ebola isolated
from Sierra Leone between the 25th May 2014 and 12th September
2015. A dated phylogeny was built for these genomes using BEAST
(Suchard et al., 2018) in a previous study (Dudas et al., 2017). The
import analysis took 50 s. The results are shown in Figure 6, with 25
isolates having a posterior predictive P-value of importation below
0.01, of which 5 had a probability below 0.001. All the inferred
imports correspond to isolates from 2015, despite most (544/1031)
isolates in this collection being from 2014, which is statistically sig-
nificant (Fisher’s exact test comparing imported versus non-
imported in 2014 versus 2015, P < 10�4). This result coincides well
with the incidence of Ebola over time in Sierra Leone and the two
other badly affected neighbouring countries Guinea and Liberia
(Shultz et al., 2016). The end of 2014 and the beginning of 2015
corresponds to the time when Sierra Leone managed to greatly re-
duce the number of Ebola cases, whereas other countries took longer
to do so. The previous study analysing these Sierra Leone genomes
also included 210 genomes from Liberia and 369 genomes from
Guinea (Dudas et al., 2017) and performed a geographic history re-
construction of migrations between the three countries using the dis-
crete trait analysis method (Lemey et al., 2009) implemented within
BEAST (Suchard et al., 2018). It is therefore interesting to compare
the results of this previous phylogeographic analysis (Dudas et al.,
2017) with our own results based on the genomes from Sierra Leone
only (Fig. 6). The phylogeographic analysis revealed that the most
recent common ancestor of the epidemic existed around January
2014 in Guinea, from which it spread to Sierra Leone around April

2014 (Dudas et al., 2017). The vast majority of subsequent cases in
Sierra Leone were descended from this initial introduction (Dudas
et al., 2017), which would not be detected by our approach since it
corresponds to the start of the local population. However, a few
sporadic cases were linked with several reintroduction events of
Ebola into Sierra Leone, especially from Guinea between January
and April 2015 (Dudas et al., 2017). The timing and phylogenetic
position of these migrations are in good qualitative agreement with
our results on importation into Sierra Leone (Fig. 6). These reintro-
duction events occurred in spite of the closure of the international
borders between the three countries affected by Ebola in mid-2014,
as previously noted (Dudas et al., 2017). A phylogeography ap-
proach would generally be expected to yield more accurate results
on migration between countries, since it is based on more complete
data, compared to an importation analysis based on genomes from a
single country only. However, in many situations genomes are not
available from all the countries in which a pathogen circulates, so
that a traditional phylogeographic method could not be applied.

Finally, we analysed a set of 3797 SARS-CoV-2 genomes isolated
in Scotland between March 2020 and June 2022. This collection
was obtained by downsampling the �200 000 Scottish sequences
that have been deposited in GISAID since the beginning of the
COVID-19 pandemic; for each day, for which data were available,
at most five genomes were randomly selected from those having no
ambiguous or unknown base. We then cleaned up the multiple se-
quence alignment retrieved from GISAID by only keeping the rele-
vant rows, eliminating columns entirely made of dashes and
trimming sequences at both sides by the minimum amount of
nucleotides needed to make the stretches of dashes at the beginning
and the end of each genome, which indicate unknown sequence, en-
tirely disappear for all the genomes selected. The resulting alignment
was given as input to FastTree version 2.1.10 (Price et al., 2010) to
generate a phylogeny which was then dated using BactDating ver-
sion 1.1 (Didelot et al., 2018). This choice of phylogenetic software
was guided by the need for scalability to large numbers of genomes.
The inference of imports took approximately 20 min to compute,
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resulting in a total of 50 detected imports, as shown in Figure 7 and
listed in Supplementary Table S1. Interestingly, no imports were
found until August 2020, perhaps as an effect of the first lockdown
which started at the end of March 2020 and was progressively
relaxed throughout Spring 2020. During August 2020, 15 imports
were identified, which was the largest for any month in the analysis.
Many of these imports may be associated with Summer holidaying.
According to our analysis, the alpha variant was imported in
November 2020, soon after it had been reported in England (Davies
et al., 2021). Several imports corresponded to low-frequency var-
iants, including Beta in December 2020, Zeta in December 2020
and Eta in March 2021. Fewer imports were detected in the first few
months of 2021, which may be the result of the second lockdown in
January and February 2021. The Delta variant was imported in
April 2021, soon before it became dominant throughout the UK
(Elliott et al., 2021). From then on, the Alpha variant was reim-
ported three times and the Delta variant nine times with the last
imports occurring in December 2021. The Omicron variant (Cao
et al., 2022) was first imported in December 2021, and reimported
three times from January to March 2022, by which time this variant
had become dominant in the UK and globally.

4 Discussion

When studying the occurrence of an infectious disease in a geo-
graphically limited population, it is often important to distinguish
cases that have been transmitted within the population from cases
that have been imported from external origins. Genomic data have
the potential to distinguish between these two types of cases, since
new imported cases would usually be more distantly related from
previous cases than cases arising from local transmission. We devel-
oped a statistical method that can quickly establish which cases have
been imported. Application to simulated datasets showed that our
method has excellent specificity, which means a very low probability

that a locally transmitted case would be inferred to have been
imported. Our method also has good sensitivity to detect cases that
have been truly imported, although this is not perfect since there is
always a chance that an import will be genetically similar to the lo-
cally transmitting population. We also showed that our method can
be useful in four very different real applications: an outbreak of gon-
orrhoea in a single city, a country-wide expansion of a bacterial
clone causing enteric disease, the 2013–2016 epidemic of Ebola
virus disease in Sierra Leone, and the COVID-19 pandemic.

Our approach uses only genomic data from within the location
of interest, without making assumptions about the genomic epi-
demiology of the disease outside of this location. This problem is
therefore analogous to the inference of recombination coming from
external unsampled sources (Didelot and Falush, 2007; Didelot and
Wilson, 2015) rather than recombination within a single population
(Didelot et al., 2010). In this case, genomes from other populations
are sometimes used subsequently, by comparing them with the
inferred recombination tracts to determine if they might be the ori-
gin of the recombination events (Didelot et al., 2011, 2012; Ozer
et al., 2019). In the same way, for the problem of detecting imports
into a location we are interested in here, any information about the
genetic diversity at other locations could be used to assess the likely
origin of the detected imports, simply by comparing the genomic
sequences of the inferred imports with the genomes collected from
other locations.

Our method requires first to compute a dated phylogeny from
the genomes before detecting imports and therefore fits within the
framework of step-by-step approaches from microbial genomes to
epidemiology (Didelot and Parkhill, 2022). There are several advan-
tages to this type of approach, including scalability to large datasets
as we demonstrated here with the analysis in a matter of seconds of
datasets containing hundreds of pathogen genomes. There are how-
ever also drawbacks to such an approach compared to a more inte-
grated approach (Didelot and Parkhill, 2022). A first issue concerns
the fact that the model used to build the dated phylogeny is contra-
dicted here by the presence of imports. As previously noted (cf
Section 2), this is unlikely to have a significant effect as long as
imports are relatively rare, but in any case, the effect would be to
overestimate the local effective population size, thus making the
method more specific and less sensitive, as desired. Another inaccur-
acy of the step-by-step approach is that a single dated phylogeny is
used as input, which does not capture the uncertainty in the phylo-
genetic reconstruction. A solution is to apply the method to a poster-
ior sample of the dated phylogenies (Nylander et al., 2008), which is
feasible here since our method to detect imports is very fast. We
applied this idea to one of the real datasets we analysed and found
that the detection of imports was relatively robust even when using
a single consensus tree (Supplementary Fig. S7). This is as expected
since imports correspond to long branches of the tree which are un-
likely to have much uncertainty.

The main assumption in our model is that the local population
evolves according to a coalescent model with varying population
size (Donnelly and Tavaré, 1995; Griffiths and Tavare, 1994).
Imports are detected as deviations from this model, rather than
being based on an explicit model of migration, so that our method
could be described as being semi-parametric. Consequently, our
method can be applied to a wide range of epidemiological scenarios,
including outbreaks, as showcased by our analysis of a local gonor-
rhoea outbreak (Didelot et al., 2016); large epidemics spanning mul-
tiple countries, as exemplified by the S.sonnei and Ebola analyses
(Figs 5 and 6); or even worldwide pandemics, as in the SARS-CoV-2
application (Fig. 7). Our method should be especially useful when
data are available mostly from a single location, preventing the use
of a standard phylogeography approach (Bloomquist et al., 2010;
De Maio et al., 2015; Lemey et al., 2009). Sampling of the local
population needs to be dense enough to infer fluctuations of its ef-
fective size as in other phylodynamic methods (Baele et al., 2016;
Ho and Shapiro, 2011; Pybus and Rambaut, 2009). If the sampling
is not dense enough, the credible range for the coalescent intervals
will be very large and imports will not be detectable. In addition,
most cases need to be locally transmitted rather than imported, since
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imports are detected based on having larger coalescent intervals
than other comparable cases (Equation 14). Consequently, one situ-
ation where our method would be misleading is if all cases are
imported rather than locally transmitted. For instance, consider a set
of samples from a single hospital ward, with all cases being
community-acquired from a local outbreak rather than transmitted
on the ward. In this case, the population size will be estimated for
the whole community population, rather than for the ward popula-
tion, and no import would be inferred, which would be misleading
in terms of distinguishing nosocomial and community transmission.
Our method should therefore be used only on genomes from a popu-
lation within which local transmission is known to happen frequent-
ly, with importation being the exception rather than the rule.
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