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Understanding the drivers of respiratory pathogen spread is challenging, particularly in a timely manner
during an ongoing epidemic. Here we present insights obtained using daily data from the NHS COVID-19
app for England and Wales and shared with health authorities in almost real time. Our indicator of the
reproduction number R(t) was available days earlier than other estimates, with a novel capability to
decompose R(t) into contact rates and probabilities of infection. When Omicron arrived, the main epidemic
driver switched from contacts to transmissibility. We separate contacts and transmissions by day of
exposure and setting, finding pronounced variability over days of the week and during Christmas holidays
and events. As an example, during the Euro football tournament in 2021, days with England matches
showed sharp spikes in exposures and transmissibility. Digital contact tracing technologies can help
control epidemics not only by directly preventing transmissions but also by enabling rapid analysis at scale

and with unprecedented resolution.

Monitoring is the first step in responding to epidemics, guid-
ing all decisions that follow. Early in the COVID-19 pandemic,
World Health Organization Director General Tedros Ad-
hanom Ghebreyesus urged countries to test widely, arguing
that “You cannot fight a fire blindfolded. And we cannot stop
this pandemic if we don’t know who is infected.” () Most
countries heeded this advice and developed testing infra-
structure at scale. Testing is the most basic ingredient of ep-
idemic monitoring, counting the number of people affected
at a given time.

The time-varying reproduction number R(t) characterizes
the dynamics of an epidemic. There is some variation in pro-
posed definitions of the measure, but the core idea is to cap-
ture the average number of secondary infections arising from
an infected individual at time t over the course of their whole
infectious period (2-5). Using a model for epidemic dynam-
ics, R(t) can be inferred from observations reported at differ-
ent times, including case counts but also survey data, hospital
admissions and deaths (6-15). R(t) is a key metric for evalu-
ating past and predicting future impacts of interventions, and
is widely used to assess the recent, current or future state of
the epidemic.

Epidemics are driven by complex patterns of pathogen
transmission in dynamically interacting populations. The
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complexity of the system implies the possibility of measuring
many more aspects of the transmission process than case
counts—at least in theory. In practice, the usually rapid trans-
mission of respiratory pathogens in close-contact settings
makes it difficult to obtain measurements at scale. Better
characterization of complex epidemic systems has the power
to inform public health decisions, particularly when the re-
sults are rapidly available. More detailed understanding of
the changing drivers of an epidemic and the impact of inter-
ventions allows future interventions to be more targeted and
tailored, helping to minimize negative socio-economic im-
pacts.

Digital contact tracing was proposed early in the COVID-
19 pandemic as a tool to reduce transmission (16-18). Blue-
tooth-based contact tracing apps were introduced in many
countries (19, 20), and their varying degree of success in re-
ducing transmission has been evaluated (21-26). Little atten-
tion has been paid to the possibility of using digital contact
tracing to improve epidemic monitoring, using the mini-
mized and anonymized data generated to ensure the correct
functioning of the app (27, 28). Here, we demonstrate this
potential using data from the NHS COVID-19 app for England
and Wales (henceforth, ‘the app’). The dataset produced as a
byproduct of the app’s contact tracing function was large and
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epidemiologically informative, thanks to the app being active
on 6-18 million devices (12-37% of the population aged 16+,
assuming one device per person) at all times over its 55
months of operation. We show that this data enables rapid
epidemic monitoring with an unprecedented degree of gran-
ularity, providing unique insights into the drivers of epidemic
dynamics.

Data from the NHS COVID-19 app

We analyzed different sources of data available through the
app covering early 2021 to early 2023. One source was ‘ana-
lytics’ data, described previously (22). This comprised a small
amount of anonymous data sent to a central server each day
by each installation of the app on a mobile device. It indi-
cated, for example, whether the user received an exposure no-
tification today or recently, whether they reported a positive
test result today, and their self-declared postcode district. No
data on age was available through the app, aside from users
self-reporting being aged 16+ which was an eligibility re-
quirement for using the app. Thus, all results we report here
are for individuals aged 16+.

In the UK there was never an obligation to take a test fol-
lowing an exposure notification, and recommendations to do
so were only in place from 16 August 2021 to 24 February
2022. Therefore all our results concerning infections among
notified app users are underestimates of the true amount of
infection, due to under-ascertainment when considering only
voluntarily reported positive tests. Infections may also have
been caused by an interaction that was not detected by the
app, particularly when background prevalence was high.

Disaggregating reproduction number dynamics into
contact rates and infection probability

From app data we calculated a contact rate CR, defined as the
mean number of contacts notified per positive test reported
through the app on day ¢, normalized by the proportion of the
population using the app and the proportion of test-positive
users that consented to contact tracing that day. This meas-
ure estimates the average number of people (with or without
the app) who came into close contact with a test-positive app
user in a time window of a few days before they tested posi-
tive (see Methods). The contact rate CR (Fig. 1A) captured
similar trends to Google Mobility (29) and the CoMix study
(30) (fig. S1 and S2). Figure 1B shows the proportion of noti-
fied app users reporting through the app that they tested pos-
itive shortly after exposure notification, TPAEN (23). This
metric is similar to the secondary attack rate, though is an
underestimate of the proportion of notified users who were
truly infected due to underascertainment of cases. Neverthe-
less, it captures the expected dynamics of transmissibility, in-
cluding a decrease during vaccine roll-out in the first half of
2021 and an increase with the arrival of the Omicron variant
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in December 2021. The product of CR and TPAEN, which we
denote Rypp(t), is an indicator for the reproduction number
R(t) (Fig. 1C): it estimates the average number of contacts re-
porting an infection after being exposed to a test-positive app
user. These exposures must occur in a short time window be-
fore the user reports a positive test (at which point, their app
temporarily pauses contact tracing), making Rapp(t) an under-
estimate of R(t).

Unlike existing R(t) estimators from time series of cases,
Rapp(t) allows changes in transmission rates over time to be
attributed to changes in contact rates (CR) or changes in
probability of reported infection in those contacts (measured
by TPAEN) or both (Fig. 1D). The rapid increase in Rapp(t) in
May 2021 was driven more by an increase in contact rates
than by an increase in probability of reported infection.
Spring 2021 had a ‘roadmap’ of policy changes for lifting so-
cial restrictions (31, 32) (see the timeline in the supplemen-
tary materials); the biggest increases in contact rates
occurred after Stage 3, with Stage 4 (‘Freedom day’) causing
little change in contact rates.

Some new viral variants had increased transmissibility
and thus increased R(t) (33, 34). The arrival of the Delta var-
iant caused surprisingly little increase in probability of re-
ported infection, likely due to the contemporaneous
vaccination program. The arrival of the Omicron variant (35)
in November 2021, however, caused an increase in Rq,p(t) al-
most entirely driven by higher transmissibility. Before Omi-
cron appeared at the end of November 2021, TPAEN alone
explained 30% of the daily variability in R.p,(t) and contact
rates alone explained 46% (as assessed by the squared log-
scaled correlation coefficient). Daily variation in TPAEN and
CR were anticorrelated in this period (log-scaled Pearson cor-
relation coefficient 7=-0.25). With the arrival of Omicron, the
driver of the epidemic shifted from contacts to transmissibil-
ity (fig. S3). From December 2021, TPAEN and CR were still
anticorrelated (7=-0.37) but the daily variation in R,pp(t) was
almost entirely explained by TPAEN (83% versus 0.2% by
contact rates).

Figure 2 shows publicly available estimates of the repro-
duction number R(t) together with the app-based indicator
Rapp(t). We see broad agreement around major change points
across the different measures, suggesting that the sample of
app users was sufficiently large and diverse to provide a reli-
able signal of epidemic dynamics at the population level (de-
spite our expectation that app users are not a representative
sample of the general population; the app did not collect any
demographic data about its users to test this). For example,
these measures all agree on an increase in R(t) around the
beginning of December 2021. Some variation in timing is ex-
plained by differences such as the handling of lags in report-
ing and the precise definitions of the measures, such as
whether R(t) is defined for someone who was infected,
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infectious or testing positive on day t. Figure S4 shows the
measures that were combined to provide the SAGE/UKHSA
estimates of R(t).

For many applications, specifying the exact date of an R(t)
change point is less important than simply identifying that
there has been a change, and doing so rapidly. Estimates of
Rapp(t) were available with a 6-day lag from the date of a pos-
itive test being reported in the app. The lags for other esti-
mates varied according to data availability and publication
schedules; we consider December 2021 as an example. An in-
crease in R(t) became apparent on 17 December, 16 Decem-
ber, 15 December and 10 December for SAGE/UKHSA (15),
EpiNow2 (10), LocalCovidTracker (11, 36) and the app, respec-
tively. Thus, the app-based indicator R.pp(t) alerted us to a
change point around 5 days earlier than these publicly avail-
able estimators (figs. S5 and S6). App delays are shown in figs.
S7to S9.

Disaggregating CR and TPAEN across Wales and the nine
regions of England (Fig. 3), we saw some regional variation,
especially stark for London (red). From 1 February 2021 to 15
March 2023, London's median CR was 32, compared to 20-26
for other regions, and its median TPAEN was 1.8, compared
to 2.5-2.9 for other regions (Fig. 3, A and B). These differences
were not driven by only a few key moments or events: they
were present at most times throughout the period of study
(Fig. 3, D and E). London’s high CR and low TPAEN combined
to give a moderate Rqpp(t) estimate (Fig. 3C) which was simi-
lar to those of other regions at most times (Fig. 3F). We ob-
served other regional variations, for example, the median
Rapp(t) for the South West of England was comparable to
much of the East of England but consisted of lower contact
rates and higher TPAEN.

Data on exposure events

The analyses above were all based on the daily ‘analytics’ data
recorded by the app. An additional source of data—‘event’
data—was recorded about risky exposure events. We de-
scribed this data previously (37). Briefly, when two app users
spent time with their phones in close proximity, anonymized
data about this interaction was stored for a two-week period
on their respective phones. If one of the users recorded a pos-
itive test in the app during this period, and if the timing and
proximity of the interaction crossed a risk threshold, then an
exposure notification was triggered for the other user, and
some limited data about the exposure was sent to a central
server.

We define a contact event to be an interaction where two
app users’ phones were sufficiently close for long enough to
trigger an exposure notification after one of them reported a
positive test. A contact is an individual who received a notifi-
cation. We define an infection event detected by the app to be
a positive test result reported via the app following a risky
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exposure notification, during an interval beginning with no-
tification and ending 14 days after the last exposure. For such
events we estimated and subtracted the number attributed to
background transmissions not detected by the app, leaving
those transmission events that we attributed to the recorded
exposure (37). The fraction of contact events that result in
transmission events defines the probability of reported trans-
mission. For each contact we calculated their cumulative risk
score by summing the risk score calculated by the app, based
on proximity and duration, for each separate 30-min window
covering the whole exposure event. Previously we showed
this measure to be the best single predictor of probability of
reported transmission, as detected by the app (37).

For contact and transmission events with an exposure
spanning multiple days, we assigned a single representative
day probabilistically in proportion to the total duration of ex-
posure on each day. Normally case data are indexed only by
the date of reporting, which has a variable delay from date of
infection, introducing a smoothing effect on any daily varia-
tion in infections (fig. S10). Here, having actual dates of ex-
posure provides sharper resolution into the underlying
transmission patterns, demonstrated in the next three sec-
tions.

The app data does not contain any information about the
location of a contact event, but the total duration and fre-
quency of exposure between contact and index case can be
used to approximately classify them into settings. We previ-
ously defined these as household contacts (at least 8 hours’
exposure on at least one day), recurring contacts (exposure
on more than one day, for less than 8 hours each day), single-
day contacts (between 30 min and 8 hours), and fleeting con-
tacts (less than 30 min) (37). Table S1 summarizes the data in
these four settings.

Disaggregating contact and transmission events by day
and setting

Figure 4A shows the daily total number of notified contacts,
indexed by their date of exposure and colored by their mean
cumulative risk score. This risk score is closely related to the
actual risk of transmission (37). The steep increase in con-
tacts in Spring 2021 reflects the aforementioned roadmap for
lifting restrictions. In particular, a set of policy changes on 17
May 2021 led to increased mobility and app use (23, 38), co-
inciding with the arrival of the Delta variant to the UK (36)
and increasing levels of virus circulation (39). Nevertheless,
the mean of the cumulative risk score each day was relatively
low in Spring 2021, likely due to the remaining restrictions
reducing the duration and/or the proximity of contacts.

The number of daily contacts reached a peak of 176,000
on 11 July 2021, the date of the final match of the (postponed)
Euro 2020 tournament. This was followed by a decrease in
contacts due to a decrease in cases, a decrease in app use (fig.
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S13), and probably some effects of summer holiday travel and
other behavioral changes as restrictions eased further. In-
deed, cumulative risk scores were typically higher after July
2021, corresponding to longer and/or closer exposures. In late
2021 there was another wave of contacts partially due to the
arrival of the Omicron variant in November 2021 (36). The
daily number of exposure notifications received by app users
closely tracked the number of contact events with a delay of
3-6 days (figs. S7 and S10).

The app detected an estimated 271,000 transmission
events in the period 1 April 2021 to 21 February 2022. Figure
4B shows that these occurred in two main waves as expected
from the daily numbers and riskiness of contact events (Fig.
4A). Clear weeKly patterns are visible, explored below.

In Fig. 5 we show the proportions of different types of con-
tact and transmission events varying over time. Using me-
dian values for this period (1 April 2021 to 21 February 2022),
household contacts accounted for only 6% of contacts but
39% of transmission events, whereas fleeting interactions ac-
counted for 48% of contacts but only 12% of transmission
events. During the lifting of social restrictions in April-May
2021 there was a gradual shift away from household contacts
toward briefer contact events, with 8%-19% of contacts from
households in the first week of April compared to 2%-4% by
the last week of May. Due to the low number of transmission
events in these months (Fig. 4B) the fractions of transmission
events (Fig. 5B) are noisy. Late November and December 2021
saw the Christmas shopping season and the arrival of the
Omicron variant; the fraction of contacts from each setting
remained fairly stable (always with strong day-of-the-week ef-
fects), though with an increasing burden of transmissions
from briefer contact events. 14-23% of transmission events
were from fleeting contacts in the first week of November,
compared to 26-41% in December (excluding Christmas Day
and Boxing Day, analyzed in more detail below). Figure S14
shows how these results vary with geographical region, and
fig. S15 shows the variability in the app’s cumulative risk
score by setting. Although absolute numbers of fleeting con-
tacts were 9 times higher than household contacts, cumula-
tive risk scores of household contacts were 120 times higher
than those of fleeting contacts.

Figure 6B shows day-of-the-week effects when disaggre-
gating the transmissions by setting. Household transmissions
were highest on Sundays, with 1.3 times as many transmis-
sions as on Fridays. Fleeting transmissions peaked on Satur-
days, at 2.6 times the level of Mondays (Fig. 6B). The notable
exception to these patterns was Christmas Day 2021 which
was a Saturday.

Dynamics during the Christmas season

Socially, the Christmas season in England and Wales typically
sees extensive shopping, work celebrations and family
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reunions, finally followed by a quiet January. Similar pat-
terns occur for Christmas and other celebrations in much of
the World. The epidemiological impact of this is understud-
ied.

Figure 7A shows that the contact rate CR increased during
the 2021 pre-Christmas season, then decreased markedly
around Christmas Day and through January 2022, to values
at or below the mean value of 20 measured during lockdown
in February-April 2021. We see a similar pattern for Christ-
mas 2022 but with a faster recovery in January 2023. It is
possible that caution and soft social restrictions following the
announcement of the arrival of the Omicron variant in late
November 2021 (32), together with the high numbers of peo-
ple self-isolating in January 2022, extended and intensified
typical behavioral changes associated with the holiday season
(annual leave, staying home in cold weather, etc.). Note that
these two Christmas seasons differed in viral prevalence, test-
ing behaviors and app use (supplementary timeline).

Figure 7B shows the fraction of contacts between app us-
ers in each setting for the six-week period from 1 December
2021 to 11 January 2022 (upper panel) and from 1 December
2022 to 11 January 2023 (lower panel). Again there were sim-
ilar patterns across the two years, although the latter is more
noisy due to lower case numbers and app use (fig. S13).
Christmas Day, and to a lesser extent the following few days,
saw a shift toward household and recurring contacts, away
from single-day and fleeting contacts. The median proportion
of contacts classified as household for this six-week period in
2021-2022 and 2022-2023 was 7% and 6% respectively, but it
was 18% and 16% on Christmas Day. Recurring contacts in-
creased from a median of 15% to 23% on Christmas Day 2021,
and from 12% to 27% in 2022.

Figure 7C shows the transmission events during the six-
week period from 1 December 2021 to 11 January 2022. 15%
of these occurred on Christmas Day and the two preceding
Saturdays, likely related to social and shopping habits. Alt-
hough Christmas and Boxing Day 2021 had fewer contacts
than in the preceding weeks (Fig. 7A), there was a local peak
in transmission events on those days, particularly in house-
holds which reached their overall peak of 1,500 on Christmas
(Figs. 6 and 7C). In contrast, transmission events from single-
day or fleeting contacts were notably lower on Christmas Day
than would be expected from their trends. There were 160
transmission events on Christmas Day from fleeting contacts,
80-83% lower than on the Saturdays either side. The shift on
Sunday 26 December 2021 toward more brief encounters for
contact and transmission events likely captures a propensity
for more social mixing and the re-opening of many shops for
popular Boxing Day sales. A similar pattern can be observed
for 2022, despite limitations in detecting transmissions be-
yond mid-2022 (fig. S16).

There was a notable peak in transmissions from recurring
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contacts on Friday 31 December 2021, a day when most work-
places were open and many social gatherings took place. So-
cial gatherings on this day in Belgium were implicated in
increased infection events (40). On Saturday 1 January 2022
(a Bank Holiday, when workplaces are typically shut), there
was another local peak in household transmissions. The pre-
cise timings of the Christmas holiday period varied across
workplaces and schools, but it is common for schools to be
closed for 2-3 weeks. Correspondingly, contact and transmis-
sion patterns returned to more normal levels within the first
two weeks of January 2022.

Impact of the Euro football tournament

During the 2020 UEFA European men’s Football Champion-
ship, held from 11 June to 11 July 2021, there was a large in-
crease in transmissions in the UK (39, 4I). The tournament
saw the best performance by the England men’s football team
since 1966. It was several months into the roadmap for lifting
restrictions, and led to an increase in gatherings in pubs and
homes. The app data reveals how the epidemic was shaped
by this unique event.

Days on which the English or Welsh team played showed
strong peaks in transmissions for app users registered as re-
siding in England or Wales respectively (Fig. 8A). This often
disrupted the typical pattern of transmissions peaking on
Saturdays (Fig. 4B). The peak for users residing in England
was on Sunday 11 July 2021 when England played Italy in the
tournament final: transmission events were 6.1 and 8.7 times
higher that day than on the previous and following Sundays
respectively. Of the 57,100 transmission events detected by
the app during the 31 days of the tournament, 7,800 (18%) of
them occurred on the day of the final match. Overall, days
with England matches recorded 1.1 - 6.6 times higher num-
bers of daily transmissions compared to a baseline rolling 15-
day median, and the excess of transmissions on these match
days accounted for 29% of all transmissions in the period.
Only 4% of app users registered as residing in Wales, giving
smaller numbers of transmission events (1.8% of those
shown), but with similar patterns.

Match days had increased contact rates and increased
probability of transmission and infection (Fig. 8B and fig.
S17). For counts of contact and transmission events, as well
as the probability of a transmission being reported through
the app per contact, we calculated trend-corrected values by
subtracting the overall trend and day of the week effects (see
supplementary methods). Increased contact rates and in-
creased probability of transmission combined to cause the
considerable peaks in transmissions.

The peaks in infections on match days were driven by an
increasing burden from single-day and fleeting contacts. For
England, 48% of the transmission events detected during
match days were from single-day contacts and 21% from

First release: 11 July 2024

science.org

fleeting contacts, compared with 27% and 12% respectively
for days without England matches (Fig. 5). This indicates that
individuals who would not regularly come into contact were
mixing more than usual at a level relevant for risk of infection
(fig. S18).

The disaggregation by day and country strongly supports
the hypothesis that the observed peaks in transmissions in
this period were driven by social behaviors surrounding
watching the matches (e.g., in homes, pubs, large public
screenings and Wembley stadium). A large burden of addi-
tional infections from Euro match days was also reported in
a study across 12 countries (42).

Discussion

We analyzed anonymized data gathered by the NHS COVID-
19 app in England and Wales in 2021-2023, finding that the
app provided rich insights into the COVID-19 epidemic in ad-
dition to its primary role of digital contact tracing. Highly
novel among our results is an indicator Rypy(t) of the time-
varying reproduction number that is disaggregated into mul-
tiplicative contributions from contact rates and from the
probability of reported infection in those contacts (which we
measured with the proportion of notified app users reporting
through the app that they tested positive shortly after expo-
sure notification, TPAEN). This allowed us to see when
changes in transmission levels could be attributed to changes
in contact rates, such as at relaxation of restrictions, or to
changes in probability of infection per contact such as with
the arrival of the Omicron variant. Furthermore, existing R(t)
measures are inferences drawn using a model of epidemic dy-
namics to link different times, commonly the renewal Eq. (4).
Rapp(t), by contrast, requires no such model and is thus a more
direct measure of per-person transmission.

Rapp(t) provided a reliable signal of epidemic change
points and their direction, though not of the exact magnitude
of R(t). We under-ascertained infections among notified app
users, relying on voluntary case reporting through the app;
we also only considered transmissions from index cases be-
fore reporting of a positive test (at which point the app
stopped recording exposures until after the set isolation pe-
riod). Both points caused underestimation of R(t), by a factor
that changed with testing policies, app version and isolation
behavior. We found that when R(t) from other sources was
increasing and greater than 1, the corresponding upwards
trend was typically exaggerated in R,pp(t), as apparent in the
comparison with high-quality REACT-1 estimates (43) (fig.
S19). This was because the background risk of infection from
non-app users increased during times of high prevalence, ar-
tificially driving up TPAEN in the calculation. This exaggera-
tion was helpful for rapidly spotting an increase; for careful
historic analysis of the impacts of interventions, slower, more
accurate estimates of R(t) are more appropriate (5). The 6-
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day lag to a stable estimate of R,pp(t) was consistent through-
out the app’s lifetime. As the pandemic progressed, publicly
available estimates of R(t) ceased or were published less of-
ten, in part because case reporting on the national dashboard
was reduced from its original daily frequency (44).

Even with the best approach, there are intrinsic unavoid-
able delays in estimating R(t). No method will ever determine
contact rates of cases before the cases are reported, and no
method will ever measure either secondary attack rates or
R(t) before the secondary infections are detected. For the
COVID-19 epidemic in England and Wales, the delay for the
app to detect exposures to confirmed cases was 3-5 days by
PCR and 2-3 days by rapid testing, and the delay from trans-
mission to detection of secondary cases was 4-8 days by PCR
and 3-6 days by rapid testing (fig. S7). Hence, R(t) could not
be estimated earlier than a week after the actual time of
transmission.

We analyzed the app’s daily analytics data in almost real
time during the epidemic. We provided updates of many of
the results presented here to the UK Government and public
health authorities with weekly frequency, and at peak times
daily, until the app’s decommissioning in April 2023. Being
based on a novel data source, our reports were strongly cave-
ated and were always used alongside other, more established
sources such as case counts and hospital admissions (fig.
S20). However, in hindsight, signals from app data were re-
markably reliable, even across major change points in testing
policy. The app also enabled more localized insights which
were helpful for local decision making, as tested on one NHS
Integrated Care System (a collection of 10 Lower Tier Local
Authorities). At the level of single local authorities we found
that estimates of Rqpp(t) were too noisy and inaccurate. The
results obtained using events data are reported here for the
first time; in future apps such analyses could be conducted in
real time.

The Euro 2020 tournament saw a large increase in case
numbers; we resolved cases reported through the app down
to daily resolution in the time of risky exposure and found
clear and strong peaks on the days of England matches for
users in England, likewise for Wales. We did not perform a
causal analysis—estimating the difference between observa-
tions and a modeled counterfactual epidemic with no tour-
nament—but the strength and resolution of the peaks, on a
fairly smooth background, is strongly supportive of the match
days having an impact. Transmissions on match days came
mainly from single-day and fleeting contacts, indicating that
individuals who would not regularly come into contact were
mixing more than usual at a risk level relevant for infection.
We speculate that this contributed to viral spread outside of
typical contact networks. Compared to usual analyses of the
dates on which cases were reported, our analysis of the dates
on which cases were actually exposed enabled the high
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temporal resolution necessary to consider unique individual
days like during Euro 2020, as well as Christmas and New
Year’s Eve.

The most prominent peaks in COVID-19 transmissions
correspond to days associated with nationwide decentralized
gatherings. While small gatherings are seen as less risky than
large events because of their smaller scale and reduced
chance for superspreading, a large number of small decen-
tralized gatherings involving a large fraction of the popula-
tion may have a proportionally large impact on epidemic
dynamics. Future studies should be devoted to large-scale
monitoring and epidemiological understanding of these
events.

Limitations to our analyses largely arose from the mini-
mal, anonymized nature of the app data. No demographic
data was collected, making it impossible to check the repre-
sentativeness of app users as a (large) sample of the popula-
tion, and then to correct for biases. Data on age would have
been particularly helpful but this was not available, aside
from users self-reporting being aged 16+. Thus, all results
presented here concern only those aged 16+; other studies are
needed for the contact and transmission patterns in under-
16s and more generally for age-specific patterns. Also, our ge-
ographical data (postcode district of residence) was self-de-
clared only once by users—when they installed the app. This
data was more likely to reflect location earlier in the life of
the app, when users were less likely to have changed address
since app installation, and when heavier restrictions limited
travel. It was particularly unlikely to be representative for us-
ers who travelled and/or changed address frequently, for ex-
ample commuters or students studying at a university in a
different region from their home address. In our regional
analysis of contact rates (Fig. 3) we implicitly assumed that
the user testing positive and the user(s) receiving the result-
ing notifications were registered in the same region. These
biases do not seem to have a major impact on our analyses,
as illustrated by the reliability of our indicator of R(t) and by
the robustness of the results with respect to geographical re-
weighting of the data to correct for spatially variable sam-
pling biases (fig. S21). Another example of the limitations
related to minimal data is that we could calculate the average
value each day for the number of notifications per test-posi-
tive app user, but not the dispersion around this average, re-
lated to superspreading. Finally, our estimates for the
number of transmissions assume that the relative back-
ground risk of infection for notified individuals compared to
other app users is approximately constant in time. This as-
sumption may not hold for episodic decentralized gatherings,
since both the background risk and the chance of being noti-
fied are higher for individuals attending these gatherings;
this could lead to overestimation of the number of daily
transmissions at these events.
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The lack of contextual data from the app made our metric
of contact rates less rich than existing metrics of mixing and
mobility provided by the CoMix study (30) and Google Mobil-
ity (29). These measures included data such as user age, vac-
cination status, whether contacts were inside or outside, and
type of venue visited (e.g., park, retail, etc.). The representa-
tiveness of app users is unknown, although some insights are
available from survey data (38). Daily sample sizes derived
from app data are likely to be considerably smaller than those
of Google Mobility (comprised of Google account holders
with Location History turned on) but larger than that of the
CoMix study which had approximately 1000 participants in
each round. A unique epidemiological quality of our metric is
that it is specifically for a subpopulation of individuals who
test positive for SARS-CoV-2, specifically for the period when
they were infectious. Furthermore it was available quickly,
with a 1-day lag from date of notification. Google mobility re-
ports were published regularly using data up to 2-3 days be-
fore the date of publication; CoMix reports were published
weekly or fortnightly, using data from up to 7-9 days before
the date of publication.

In conclusion, we have demonstrated that digital contact
tracing for SARS-CoV-2 can provide rich insights into epi-
demic dynamics with unprecedented time resolution, in ad-
dition to its primary purpose of reducing transmission. When
decisions must be taken quickly, evidence must be available
quickly, and digital contact tracing technologies have strong
potential to support this real-time aspect of public health. In
the future, similar apps could inform policy decisions with
data on epidemic drivers, the impacts of interventions, pop-
ulation behaviors, regional variations, and near-term fore-
casting. However, there is an urgent need to learn lessons for
improvement while individual and institutional memories
are fresh. Digital tools are likely to play an even larger role in
the next pandemic, given their unparalleled scalability and
the insight they can provide for precision public health.
Frameworks for their implementation should be agreed in
advance with stakeholders, based on robust evaluation of
their potential impacts across public health and wider soci-
ety. We should continue developing the associated infrastruc-
ture, regulatory framework and analytic capabilities in
readiness for future epidemics and pandemics.

Materials and methods

The app used the Google Apple Exposure Notification frame-
work (45) and maintained a strong focus on user privacy
throughout its operation (46). Counterbalancing this, the UK
Information Commissioner required enough data to be col-
lected for monitoring and evaluation (within an overarching
framework of data minimalism). For this reason, the recon-
struction of contact and infection events is inferential and
complex. Throughout the app’s operation there were two
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streams of data collected: analytics data and event data. We
described these in detail previously; here we provide a brief
summary and more detail about the additional methods used
in this manuscript.

We described the app’s daily analytics data primarily in
(22) and recapped in (23, 37). It was comprised of ‘analytics
packets’, which were sent to a central server once each day by
each correctly functioning installation of the app on a mobile
device that had access to the internet. We defined the total
number of analytics packets each day to be the number of
active users that day. Each packet indicated whether on that
day the user was notified, had been recently notified (specif-
ically, whether they were in a recommended isolation period
or the 14 days after it), and/or registered a positive test result.
Also included were up to four ‘individual characteristics’: de-
vice model, operating system, self-reported postcode district,
and, in some later app versions, self-reported Lower Tier Lo-
cal Authority.

We described the app’s event data in (37). It was com-
prised of ‘event packets’ sent to the central server whenever
an app user was notified of a risky exposure to a confirmed
case. Each event packet summarized an ‘exposure window’ of
30 min or less spent in close contact between the notified
user and the associated index case, only if it had a risk score
over the threshold for notification. If a pair of users spent
more than 30 min in close contact, this was recorded as sep-
arate 30-min exposure windows. The event packets included
information on proximity, duration and date of exposure, as
well as the same four individual characteristics as in analytics
packets. If a notified individual reported a positive test in the
app during the ‘observation interval’—starting with their no-
tification and ending 14 days after the exposure—the same
event packets that were sent when the individual was notified
were sent once more to the central server including a flag in-
dicating that this was the report-positive stage not the notifi-
cation stage. This allowed us to see which risky exposure
events were followed by the notified contact reporting a pos-
itive test.

As described in (37), only 59% of event packets could be
grouped together such that each group represented the set of
all risky exposure windows recorded by the app for a given
notified contact. This is because event packets did not con-
tain a unique identifier for the app user who sent them. We
filtered the analytics data to instances where only one app
user with a distinct combination of individual characteristics
was notified on a given day. In those instances, all event pack-
ets sent on that day with those individual characteristics
could be assumed to come from one app user, and grouped
together to give a combined description of a single exposure
split over multiple 30-min windows. In (37) we only used an-
alytics data to perform that filtering; here, because we also
present results from analytics data, we scaled the counts we
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obtained in events data for consistency with corresponding
counts in the analytics data. Explicitly: the number of contact
events on a given day is determined from the number of an-
alytics packets reporting notification that day, and as the
number of groups we reconstructed from events packets that
day was less than this (by a factor of about 60% on average
over all days), we scaled up the number of groups to match
it.

The availability of app data varied over its lifetime. The
app was launched on 24 September 2020 and decommis-
sioned on 27 April 2023 (47). The decommissioning was an-
nounced on 28 March 2023, and there was a corresponding
decrease in active app use and engagement. We could con-
duct detailed analysis of analytics data from 1 February 2021
until 15 March 2023, and joint analytics and event data from
1 April 2021 to 21 February 2022. Full details of the challenges
posed by the data outside of those time windows are given in
(23) and (37) respectively. They are due to app updates and
changes in app use, test availability and viral prevalence. In
the supplementary materials we also present some noisier re-
sults from exposure data later in 2022.

We previously (23) presented the daily number of notifi-
cations per positive test reported in the app. To develop this
into a measure of contact rates, here we divided by app up-
take (number of active users divided by total population) and
by the proportion of users who, on reporting a positive test
via the app, then consented to contact tracing. (Consent was
never automatic, and test-positive app users who did not con-
sent did not trigger any notifications.) Thus, we calculated

CR = #notifications(t)/(#positives(t) x uptake(t) x
proportion consenting to tracing(t))

and the corresponding Poisson confidence intervals based on
a likelihood ratio test. The app-based indicator Rapp(t) is then

Rapp(t) = CR x TPAEN

where we modeled TPAEN as a natural cubic spline with
weekly knots, calculated by combining the number of daily
notifications, the delay between notification and reported
positive tests, and the number of daily positive cases reported
after notification, as detailed in (23).

To calculate the contributions of changes in CR and
TPAEN to changes in R,;,(t) (Fig. 1D) we took the sum of the
logarithms of the changes in each of the component
measures, which describes log(R(%)) up to a constant:

108(Rapp(t)) = log(CR/median(CR)) +
log(TPAEN/median(TPAEN)) + const.

When comparing the app-based indicator Rapp(t) to other
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measures of R(t), we selected measures for which values were
made publicly available for a period of at least a year. We
plotted each from their first to last available dates. For the
EpiNow2 estimates each publication on GitHub provided es-
timates for the previous 12 weeks (48). We used the git history
to extract estimates as published every 10 weeks, to the near-
est available publication date.

For event data, we followed the standard approach to re-
move background infections that assumes that the back-
ground risk for an individual is proportional to the local rate
of positive tests reported through the app in the same period
(37), and refined it in order to account for potential day-to-
day heterogeneities in transmissibility. In particular, we im-
plemented a log-binomial model as in (37), but here we also
assumed a linear relation between transmission risk and cu-
mulative risk score, a result shown empirically in (37) for ex-
posures of cumulative duration of less than 3 hours. The log-
binomial model for individual 7 in LTLA &; notified on date n;
and with date of a randomly selected exposure window ¢; has
the form

TPAEN; = 1 - exp[p x log(1 -
app reported positive test rate(x;, n;)) - t(t;) x
cumulative risk score;]

We estimated the background risk coefficient f separately
for fleeting contacts (exposed during a single 30-min risky
window) and for all contacts spanning 2 to 6 risky exposure
windows. We then used these two [ values to estimate the
background infection risk for contacts with 1 window or at
least two windows respectively, calculating individual 7’s
background risk as the above expression with cumulative risk
score set to zero. Individuals reporting a positive test contrib-
uted 1 minus their background risk to the total count of trans-
mission events; individuals not reporting a positive test
contributed minus their background risk. In this way our to-
tal counts for transmission events are less than our total
counts for reported infections by the amount that we at-
tributed to the background risk, leaving an amount that we
attribute to the exposures recorded by the app. In case of neg-
ative count for transmission events for some category, we set
the final estimate for that category to zero. The result is illus-
trated in fig. S22 for the Euro 2020 period.

For contact events and transmission events, we used a sin-
gle date to be representative of the exposure, for example to
show counts of these events by date. For exposures that took
place over multiple days, we assigned a date stochastically
with a probability of choosing each day equal to the fraction
of exposure windows that were on that day (a close proxy for
the fraction of the overall exposure duration that was on that
day). When summing many transmission events, the counts
for representative dates become the likely dates of
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transmission. For example if there were many transmission
events all with 60% of their exposure duration on day 1 and
40% on day 2, 60% of them would have day 1 assigned and
40% of them day 2. Though the assignment of day is stochas-
tic at the individual level, the counts for many individuals (as
present in this dataset) reflect our expectation at the popula-
tion level of when the transmissions occurred (under a model
where risk remains proportional to exposure duration, i.e.,
neglecting risk saturation for very long exposures). Statistics
for the duration of different types of exposures are presented
in fig. S23 and table S1.

We conducted our analyses in R (49) with particular use
of the packages data.table (50), leaflet (51), plotly (52), RA
thena (53) and tidyverse (54).
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Fig. 1. Contribution of contact rates of test-positive app users and probability of reported
infection to the reproduction number. (A) Contact rates, CR. (B) The proportion (%) of notified app
users reporting through the app that they tested positive shortly after exposure notification, TPAEN.
(C) The app-based indicator, Rspp(t) = CR x TPAEN. (D) The relative change in Rap(t) and the
respective contributions of CR and TPAEN. The y axis is log scaled such that the contributions sum
precisely to the changes in R,po(t). Annotated vertical lines show key policy changes and app updates
(see supplementary timeline). In panels (a-c), the line shows the mean and shading shows the 95%
credible interval.
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Fig. 2. Estimates of the time-varying reproduction number R(t). (A) Estimated R(t) for England
(15) and Wales (55) as published by SAGE and later UKHSA, using an ensemble of methods (56).
(B) Estimated R(t) for the UK using the EpiNow2 method (10). Estimates were published (48) almost
daily for the previous 12 weeks; we plot snapshots of the measure as published approximately every
10 weeks indicated by the colors shown in the legend. (C) Estimated R(t) for England and Wales
combined using the LocalCovidTracker method (11, 57). (D) The app-based indicator Rapp(t). In
panels a-c a dashed horizontal line shows R(t) = 1. Shading represents credibility intervals.
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and Wales. (D to F) Time series of CR, TPAEN and Rapp(t) for each region of England and Wales, with
the London region shown in red.
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Fig. 4. Daily numbers of contacts
(risky exposures) and estimated
transmission events detected by
the app, indexed by their date of
exposure. (A) Contacts, colored by
the mean of their cumulative risk
scores. (B) Transmission events,
colored by day of the week. Infection
events are shown in fig. S11.

Fig. 5. Relative daily contribution of
different settings. Daily fractions of
contacts (A) and transmission
events (B) detected by the app,
classified by setting: household,
recurring, single-day, or fleeting.
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Fig.7. Contact and transmission event patterns during Christmas holiday periods. Christmas Day
is indicated by a dashed line. (A) Contact rate CR for 1 November to 28 February 2021-2022 and
2022-2023. Shading around the lines shows the 95% confidence interval (this is narrow for most

dates). The dotted line shows the mean level of contacts duri
for comparison. (B) Fraction of contacts by setting for 1 Dece

ng lockdown in February to April 2021
mber 2021 to 11 January 2022 (upper)

and 1 December 2022 to 11 January 2023 (lower). (C) Daily number of transmission events detected

by the app, disaggregated by setting, for 1 December 2021 to
the week.
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Fig. 8. Epidemiological indicators in England and Wales during the Euro 2020 tournament
(11 June - 11 July 2021). The period 11 June — 11 July 2021 is shaded gray. Dashed vertical lines show
match days for England and Wales, with flags and FIFA country codes (58) over these lines showing
the nation against whom they played on that day. (A) Daily number of transmission events colored
by day of the week. Note the different y-axis scales between England and Wales which reflect that
96% of app users registered an English postcode. (B) Trend-corrected values of transmission
events, contact events, and the probability of reported transmission, shown on a log scale. The trend
was inferred through linear regression by date and day of the week, excluding match days.
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